These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29788117)

  • 1. Are we ready to improve phosphorus homeostasis in rice?
    Kopriva S; Chu C
    J Exp Bot; 2018 Jun; 69(15):3515-3522. PubMed ID: 29788117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Over-expression of the bacterial phytase US417 in Arabidopsis reduces the concentration of phytic acid and reveals its involvement in the regulation of sulfate and phosphate homeostasis and signaling.
    Belgaroui N; Zaidi I; Farhat A; Chouayekh H; Bouain N; Chay S; Curie C; Mari S; Masmoudi K; Davidian JC; Berthomieu P; Rouached H; Hanin M
    Plant Cell Physiol; 2014 Nov; 55(11):1912-24. PubMed ID: 25231959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains.
    Zhao H; Frank T; Tan Y; Zhou C; Jabnoune M; Arpat AB; Cui H; Huang J; He Z; Poirier Y; Engel KH; Shu Q
    New Phytol; 2016 Aug; 211(3):926-39. PubMed ID: 27110682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.
    Iwai T; Takahashi M; Oda K; Terada Y; Yoshida KT
    Plant Physiol; 2012 Dec; 160(4):2007-14. PubMed ID: 23090587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice.
    Jia H; Ren H; Gu M; Zhao J; Sun S; Zhang X; Chen J; Wu P; Xu G
    Plant Physiol; 2011 Jul; 156(3):1164-75. PubMed ID: 21502185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of a transgene to confer low phytic acid in caryopses located at different positions in rice panicles.
    Kuwano M; Takaiwa F; Yoshida KT
    Plant Cell Physiol; 2009 Jul; 50(7):1387-92. PubMed ID: 19465440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node.
    Yamaji N; Takemoto Y; Miyaji T; Mitani-Ueno N; Yoshida KT; Ma JF
    Nature; 2017 Jan; 541(7635):92-95. PubMed ID: 28002408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis.
    Wu P; Shou H; Xu G; Lian X
    Curr Opin Plant Biol; 2013 May; 16(2):205-12. PubMed ID: 23566853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice.
    Zhang X; Sun J; Cao X; Song X
    Plant Physiol; 2015 Nov; 169(3):2118-28. PubMed ID: 26351308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1).
    Ali N; Paul S; Gayen D; Sarkar SN; Datta K; Datta SK
    PLoS One; 2013; 8(7):e68161. PubMed ID: 23844166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental Control of Phosphorus Acquisition: A Piece of the Molecular Framework Underlying Nutritional Homeostasis.
    Ueda Y; Sakuraba Y; Yanagisawa S
    Plant Cell Physiol; 2021 Sep; 62(4):573-581. PubMed ID: 33508134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice.
    Wang C; Yue W; Ying Y; Wang S; Secco D; Liu Y; Whelan J; Tyerman SD; Shou H
    Plant Physiol; 2015 Dec; 169(4):2822-31. PubMed ID: 26424157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering crop plants: getting a handle on phosphate.
    Brinch-Pedersen H; Sørensen LD; Holm PB
    Trends Plant Sci; 2002 Mar; 7(3):118-25. PubMed ID: 11906835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression regulation of myo-inositol 3-phosphate synthase 1 (INO1) in determination of phytic acid accumulation in rice grain.
    Perera I; Fukushima A; Akabane T; Horiguchi G; Seneweera S; Hirotsu N
    Sci Rep; 2019 Oct; 9(1):14866. PubMed ID: 31619750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice.
    Lu H; Wang F; Wang Y; Lin R; Wang Z; Mao C
    Plant Cell Environ; 2023 Apr; 46(4):1104-1119. PubMed ID: 36208118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice.
    Guo M; Ruan W; Li C; Huang F; Zeng M; Liu Y; Yu Y; Ding X; Wu Y; Wu Z; Mao C; Yi K; Wu P; Mo X
    Plant Physiol; 2015 Aug; 168(4):1762-76. PubMed ID: 26082401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter.
    Kuwano M; Mimura T; Takaiwa F; Yoshida KT
    Plant Biotechnol J; 2009 Jan; 7(1):96-105. PubMed ID: 19021878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of the chloroplast-localized phosphate transporter OsPHT2;1 reduces flavonoid accumulation and UV tolerance in rice.
    Liu XL; Wang L; Wang XW; Yan Y; Yang XL; Xie MY; Hu Z; Shen X; Ai H; Lin HH; Xu GH; Yang J; Sun SB
    Plant J; 2020 Apr; 102(1):53-67. PubMed ID: 31733118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters.
    Yue W; Ying Y; Wang C; Zhao Y; Dong C; Whelan J; Shou H
    Plant J; 2017 Jun; 90(6):1040-1051. PubMed ID: 28229491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds.
    Li Y; Zhang J; Zhang X; Fan H; Gu M; Qu H; Xu G
    Plant Sci; 2015 Jan; 230():23-32. PubMed ID: 25480005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.