BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29788550)

  • 1. Ubiquitin-specific protease 22 acts as an oncoprotein to maintain glioma malignancy through deubiquitinating B cell-specific Moloney murine leukemia virus integration site 1 for stabilization.
    Qiu GZ; Mao XY; Ma Y; Gao XC; Wang Z; Jin MZ; Sun W; Zou YX; Lin J; Fu HL; Jin WL
    Cancer Sci; 2018 Jul; 109(7):2199-2210. PubMed ID: 29788550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein.
    Ma Y; Fu HL; Wang Z; Huang H; Ni J; Song J; Xia Y; Jin WL; Cui DX
    Oncotarget; 2017 May; 8(20):33329-33342. PubMed ID: 28415621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia-induced USP22-BMI1 axis promotes the stemness and malignancy of glioma stem cells via regulation of HIF-1α.
    Qiu GZ; Liu Q; Wang XG; Xu GZ; Zhao T; Lou MQ
    Life Sci; 2020 Apr; 247():117438. PubMed ID: 32070708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between the expression of cancer stem cell marker BMI1 and glioma prognosis.
    Tsai YT; Wu CC; Ko CY; Hsu TI; Chang WC; Lo WL; Chuang JY
    Biochem Biophys Res Commun; 2021 Apr; 550():113-119. PubMed ID: 33691197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin-specific protease 22: a novel molecular biomarker in glioma prognosis and therapeutics.
    Liang J; Zhang X; Xie S; Zhou X; Shi Q; Hu J; Wang W; Qi W; Yu R
    Med Oncol; 2014 Apr; 31(4):899. PubMed ID: 24573640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring finger 220 promotes the stemness and progression of colon cancer cells via Ubiquitin specific peptidase 22-BMI1 axis.
    Yan J; Tan M; Yu L; Jin X; Li Y
    Bioengineered; 2021 Dec; 12(2):12060-12069. PubMed ID: 34753387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer.
    Liu YL; Yang YM; Xu H; Dong XS
    J Gastroenterol Hepatol; 2010 Nov; 25(11):1800-5. PubMed ID: 21039844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas.
    Oliva CR; Markert T; Gillespie GY; Griguer CE
    Oncotarget; 2015 Feb; 6(6):4330-44. PubMed ID: 25726526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-194 represses glioma cell epithelial‑to‑mesenchymal transition by targeting Bmi1.
    Zhang X; Wei C; Li J; Liu J; Qu J
    Oncol Rep; 2017 Mar; 37(3):1593-1600. PubMed ID: 28098896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing BMI1 eliminates tumor formation of pediatric glioma CD133+ cells not by affecting known targets but by down-regulating a novel set of core genes.
    Baxter PA; Lin Q; Mao H; Kogiso M; Zhao X; Liu Z; Huang Y; Voicu H; Gurusiddappa S; Su JM; Adesina AM; Perlaky L; Dauser RC; Leung HC; Muraszko KM; Heth JA; Fan X; Lau CC; Man TK; Chintagumpala M; Li XN
    Acta Neuropathol Commun; 2014 Dec; 2():160. PubMed ID: 25526772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bmi1 combines with oncogenic KRAS to induce malignant transformation of human pancreatic duct cells in vitro.
    Chen SJ; Chen YT; Zeng LJ; Zhang QB; Lian GD; Li JJ; Yang KG; Huang CM; Li YQ; Chu ZH; Huang KH
    Tumour Biol; 2016 Aug; 37(8):11299-309. PubMed ID: 26951514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of Bmi1 inhibits the stemness properties and tumorigenicity of human bladder cancer stem cell-like side population cells.
    Zhu D; Wan X; Huang H; Chen X; Liang W; Zhao F; Lin T; Han J; Xie W
    Oncol Rep; 2014 Feb; 31(2):727-36. PubMed ID: 24337040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitin-Specific Peptidase 22 Contributes to Colorectal Cancer Stemness and Chemoresistance via Wnt/β-Catenin Pathway.
    Jiang S; Song C; Gu X; Wang M; Miao D; Lv J; Liu Y
    Cell Physiol Biochem; 2018; 46(4):1412-1422. PubMed ID: 29689565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth.
    Xu H; Liu YL; Yang YM; Dong XS
    Int J Colorectal Dis; 2012 Jan; 27(1):21-30. PubMed ID: 21773699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting CD26 suppresses proliferation of malignant mesothelioma cell via downmodulation of ubiquitin-specific protease 22.
    Okamoto T; Yamazaki H; Hatano R; Yamada T; Kaneko Y; Xu CW; Dang NH; Ohnuma K; Morimoto C
    Biochem Biophys Res Commun; 2018 Oct; 504(2):491-498. PubMed ID: 30197002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-specific protease 22 promotes the proliferation, migration and invasion of glioma cells.
    Liang J; Zhang XL; Li S; Xie S; Wang WF; Yu RT
    Cancer Biomark; 2018; 23(3):381-389. PubMed ID: 30223389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. USP22 Contributes to Chemoresistance, Stemness, and EMT Phenotype of Triple-Negative Breast Cancer Cells by egulating the Warburg Effect via c-Myc Deubiquitination.
    Li J; Gao R; Zhang J
    Clin Breast Cancer; 2023 Feb; 23(2):162-175. PubMed ID: 36528490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The deubiquitinating enzyme activity of USP22 is necessary for regulating HeLa cell growth.
    Liu YL; Zheng J; Tang LJ; Han W; Wang JM; Liu DW; Tian QB
    Gene; 2015 Nov; 572(1):49-56. PubMed ID: 26143114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression.
    Schrecengost RS; Dean JL; Goodwin JF; Schiewer MJ; Urban MW; Stanek TJ; Sussman RT; Hicks JL; Birbe RC; Draganova-Tacheva RA; Visakorpi T; DeMarzo AM; McMahon SB; Knudsen KE
    Cancer Res; 2014 Jan; 74(1):272-86. PubMed ID: 24197134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells.
    Kim D; Hong A; Park HI; Shin WH; Yoo L; Jeon SJ; Chung KC
    J Cell Physiol; 2017 Dec; 232(12):3664-3676. PubMed ID: 28160502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.