These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 29788716)
1. Porous Silsesquioxane-Imine Frameworks as Highly Efficient Adsorbents for Cooperative Iodine Capture. Janeta M; Bury W; Szafert S ACS Appl Mater Interfaces; 2018 Jun; 10(23):19964-19973. PubMed ID: 29788716 [TBL] [Abstract][Full Text] [Related]
2. Iodine Adsorption in Metal Organic Frameworks in the Presence of Humidity. Banerjee D; Chen X; Lobanov SS; Plonka AM; Chan X; Daly JA; Kim T; Thallapally PK; Parise JB ACS Appl Mater Interfaces; 2018 Apr; 10(13):10622-10626. PubMed ID: 29547256 [TBL] [Abstract][Full Text] [Related]
3. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function. Mastalerz M Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648 [TBL] [Abstract][Full Text] [Related]
4. Nitrogen-Rich Porous Polymers for Carbon Dioxide and Iodine Sequestration for Environmental Remediation. Abdelmoaty YH; Tessema TD; Choudhury FA; El-Kadri OM; El-Kaderi HM ACS Appl Mater Interfaces; 2018 May; 10(18):16049-16058. PubMed ID: 29671571 [TBL] [Abstract][Full Text] [Related]
5. Thickness controllable hypercrosslinked porous polymer nanofilm with high CO Shi P; Chen X; Sun Z; Li C; Xu Z; Jiang X; Jiang B J Colloid Interface Sci; 2020 Mar; 563():272-280. PubMed ID: 31881492 [TBL] [Abstract][Full Text] [Related]
6. Porous Organic Cage as an Efficient Platform for Industrial Radioactive Iodine Capture. Liu X; Zhang Z; Shui F; Zhang S; Li L; Wang J; Yi M; You Z; Yang S; Yang R; Wang S; Liu Y; Zhao Q; Li B; Bu XH; Ma S Angew Chem Int Ed Engl; 2024 Oct; 63(44):e202411342. PubMed ID: 39078740 [TBL] [Abstract][Full Text] [Related]
7. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties. Wang J; Senkovska I; Oschatz M; Lohe MR; Borchardt L; Heerwig A; Liu Q; Kaskel S ACS Appl Mater Interfaces; 2013 Apr; 5(8):3160-7. PubMed ID: 23530455 [TBL] [Abstract][Full Text] [Related]
8. High-Yield Synthesis of Pyridyl Conjugated Microporous Polymer Networks with Large Surface Areas: From Molecular Iodine Capture to Metal-Free Heterogeneous Catalysis. Zuo H; Lyu W; Zhang W; Li Y; Liao Y Macromol Rapid Commun; 2020 Nov; 41(22):e2000489. PubMed ID: 33051928 [TBL] [Abstract][Full Text] [Related]
9. Facile Fabrication of Nanofibrillated Chitin/Ag Gao R; Lu Y; Xiao S; Li J Sci Rep; 2017 Jun; 7(1):4303. PubMed ID: 28655919 [TBL] [Abstract][Full Text] [Related]
10. Cationic Nonporous Macrocyclic Organic Compounds for Multimedia Iodine Capture. Xu XQ; Cao LH; Yang Y; Bai XT; Zhao F; He ZH; Yin Z; Ma YM Chem Asian J; 2021 Jan; 16(2):142-146. PubMed ID: 33305903 [TBL] [Abstract][Full Text] [Related]
11. Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity. Xie Y; Pan T; Lei Q; Chen C; Dong X; Yuan Y; Shen J; Cai Y; Zhou C; Pinnau I; Han Y Angew Chem Int Ed Engl; 2021 Oct; 60(41):22432-22440. PubMed ID: 34431190 [TBL] [Abstract][Full Text] [Related]
12. Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO Sun H; La P; Yang R; Zhu Z; Liang W; Yang B; Li A; Deng W J Hazard Mater; 2017 Jan; 321():210-217. PubMed ID: 27619967 [TBL] [Abstract][Full Text] [Related]
13. An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine. Yan Z; Qiao Y; Wang J; Xie J; Cui B; Fu Y; Lu J; Yang Y; Bu N; Yuan Y; Xia L Molecules; 2022 Sep; 27(19):. PubMed ID: 36234834 [TBL] [Abstract][Full Text] [Related]
14. Functionalized Covalent Triazine Frameworks for Effective CO Fu Y; Wang Z; Li S; He X; Pan C; Yan J; Yu G ACS Appl Mater Interfaces; 2018 Oct; 10(42):36002-36009. PubMed ID: 30272437 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine. Yang X; Yao S; Yu M; Jiang JX Macromol Rapid Commun; 2014 Apr; 35(8):834-9. PubMed ID: 24504693 [TBL] [Abstract][Full Text] [Related]
16. Thermochemical evidence for strong iodine chemisorption by ZIF-8. Hughes JT; Sava DF; Nenoff TM; Navrotsky A J Am Chem Soc; 2013 Nov; 135(44):16256-9. PubMed ID: 24147801 [TBL] [Abstract][Full Text] [Related]
17. Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks. Deshmukh A; Chiu CC; Chen YW; Kuo JL ACS Appl Mater Interfaces; 2016 Sep; 8(38):25219-28. PubMed ID: 27599537 [TBL] [Abstract][Full Text] [Related]
18. Modeling of Hydrogen Storage Utilizing Silsesquioxane Cages: Adsorption and Quasi-Dynamic Simulations of Encapsulation of H Xiao M; Tian Y; Zheng S J Phys Chem A; 2020 Aug; 124(31):6344-6351. PubMed ID: 32667197 [TBL] [Abstract][Full Text] [Related]
19. Precise fabrication of porous polymer frameworks using rigid polyisocyanides as building blocks: from structural regulation to efficient iodine capture. Xu XH; Li YX; Zhou L; Liu N; Wu ZQ Chem Sci; 2022 Jan; 13(4):1111-1118. PubMed ID: 35211277 [TBL] [Abstract][Full Text] [Related]
20. Controllable Synthesis of Porous Cu-BTC@polymer Composite Beads for Iodine Capture. Zhao Q; Zhu L; Lin G; Chen G; Liu B; Zhang L; Duan T; Lei J ACS Appl Mater Interfaces; 2019 Nov; 11(45):42635-42645. PubMed ID: 31633332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]