BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29788716)

  • 1. Porous Silsesquioxane-Imine Frameworks as Highly Efficient Adsorbents for Cooperative Iodine Capture.
    Janeta M; Bury W; Szafert S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19964-19973. PubMed ID: 29788716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iodine Adsorption in Metal Organic Frameworks in the Presence of Humidity.
    Banerjee D; Chen X; Lobanov SS; Plonka AM; Chan X; Daly JA; Kim T; Thallapally PK; Parise JB
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10622-10626. PubMed ID: 29547256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function.
    Mastalerz M
    Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-Rich Porous Polymers for Carbon Dioxide and Iodine Sequestration for Environmental Remediation.
    Abdelmoaty YH; Tessema TD; Choudhury FA; El-Kadri OM; El-Kaderi HM
    ACS Appl Mater Interfaces; 2018 May; 10(18):16049-16058. PubMed ID: 29671571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thickness controllable hypercrosslinked porous polymer nanofilm with high CO
    Shi P; Chen X; Sun Z; Li C; Xu Z; Jiang X; Jiang B
    J Colloid Interface Sci; 2020 Mar; 563():272-280. PubMed ID: 31881492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties.
    Wang J; Senkovska I; Oschatz M; Lohe MR; Borchardt L; Heerwig A; Liu Q; Kaskel S
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3160-7. PubMed ID: 23530455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Yield Synthesis of Pyridyl Conjugated Microporous Polymer Networks with Large Surface Areas: From Molecular Iodine Capture to Metal-Free Heterogeneous Catalysis.
    Zuo H; Lyu W; Zhang W; Li Y; Liao Y
    Macromol Rapid Commun; 2020 Nov; 41(22):e2000489. PubMed ID: 33051928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Fabrication of Nanofibrillated Chitin/Ag
    Gao R; Lu Y; Xiao S; Li J
    Sci Rep; 2017 Jun; 7(1):4303. PubMed ID: 28655919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic Nonporous Macrocyclic Organic Compounds for Multimedia Iodine Capture.
    Xu XQ; Cao LH; Yang Y; Bai XT; Zhao F; He ZH; Yin Z; Ma YM
    Chem Asian J; 2021 Jan; 16(2):142-146. PubMed ID: 33305903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity.
    Xie Y; Pan T; Lei Q; Chen C; Dong X; Yuan Y; Shen J; Cai Y; Zhou C; Pinnau I; Han Y
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22432-22440. PubMed ID: 34431190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative nanoporous carbons with ultrahigh uptakes for capture and reversible storage of CO
    Sun H; La P; Yang R; Zhu Z; Liang W; Yang B; Li A; Deng W
    J Hazard Mater; 2017 Jan; 321():210-217. PubMed ID: 27619967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine.
    Yan Z; Qiao Y; Wang J; Xie J; Cui B; Fu Y; Lu J; Yang Y; Bu N; Yuan Y; Xia L
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized Covalent Triazine Frameworks for Effective CO
    Fu Y; Wang Z; Li S; He X; Pan C; Yan J; Yu G
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36002-36009. PubMed ID: 30272437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine.
    Yang X; Yao S; Yu M; Jiang JX
    Macromol Rapid Commun; 2014 Apr; 35(8):834-9. PubMed ID: 24504693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermochemical evidence for strong iodine chemisorption by ZIF-8.
    Hughes JT; Sava DF; Nenoff TM; Navrotsky A
    J Am Chem Soc; 2013 Nov; 135(44):16256-9. PubMed ID: 24147801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Gravimetric and Volumetric Hydrogen Storage Capacities in Polyhedral Oligomeric Silsesquioxane Frameworks.
    Deshmukh A; Chiu CC; Chen YW; Kuo JL
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25219-28. PubMed ID: 27599537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of Hydrogen Storage Utilizing Silsesquioxane Cages: Adsorption and Quasi-Dynamic Simulations of Encapsulation of H
    Xiao M; Tian Y; Zheng S
    J Phys Chem A; 2020 Aug; 124(31):6344-6351. PubMed ID: 32667197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise fabrication of porous polymer frameworks using rigid polyisocyanides as building blocks: from structural regulation to efficient iodine capture.
    Xu XH; Li YX; Zhou L; Liu N; Wu ZQ
    Chem Sci; 2022 Jan; 13(4):1111-1118. PubMed ID: 35211277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable Synthesis of Porous Cu-BTC@polymer Composite Beads for Iodine Capture.
    Zhao Q; Zhu L; Lin G; Chen G; Liu B; Zhang L; Duan T; Lei J
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42635-42645. PubMed ID: 31633332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of metal-organic frameworks for separation of xenon and krypton.
    Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK
    Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.