BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 29789219)

  • 1. Cap-Independent Translation: What's in a Name?
    Shatsky IN; Terenin IM; Smirnova VV; Andreev DE
    Trends Biochem Sci; 2018 Nov; 43(11):882-895. PubMed ID: 29789219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs.
    Shatsky IN; Dmitriev SE; Terenin IM; Andreev DE
    Mol Cells; 2010 Oct; 30(4):285-93. PubMed ID: 21052925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent.
    Terenin IM; Andreev DE; Dmitriev SE; Shatsky IN
    Nucleic Acids Res; 2013 Feb; 41(3):1807-16. PubMed ID: 23268449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Canonical Translation Initiation Mechanisms Employed by Eukaryotic Viral mRNAs.
    Sorokin II; Vassilenko KS; Terenin IM; Kalinina NO; Agol VI; Dmitriev SE
    Biochemistry (Mosc); 2021 Sep; 86(9):1060-1094. PubMed ID: 34565312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cap-dependent, scanning-free translation initiation mechanisms.
    Haimov O; Sinvani H; Dikstein R
    Biochim Biophys Acta; 2015 Nov; 1849(11):1313-8. PubMed ID: 26381322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cap and polyA tail enhance translation initiation at the hepatitis C virus internal ribosome entry site by a discontinuous scanning, or shunting, mechanism.
    Wiklund L; Spångberg K; Goobar-Larsson L; Schwartz S
    J Hum Virol; 2001; 4(2):74-84. PubMed ID: 11437317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer.
    Lacerda R; Menezes J; Romão L
    Cell Mol Life Sci; 2017 May; 74(9):1659-1680. PubMed ID: 27913822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Efficient cap-dependent in vitro and in vivo translation of mammalian mRNAs with long and highly structured 5'-untranslated regions].
    Dmitriev SE; Andreev DE; Ad'ianova ZV; Terenin IM; Shatskiĭ IN
    Mol Biol (Mosk); 2009; 43(1):119-25. PubMed ID: 19334534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5'-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs.
    Haizel SA; Bhardwaj U; Gonzalez RL; Mitra S; Goss DJ
    J Biol Chem; 2020 Aug; 295(33):11693-11706. PubMed ID: 32571876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites.
    Johannes G; Sarnow P
    RNA; 1998 Dec; 4(12):1500-13. PubMed ID: 9848649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation.
    López-Lastra M; Rivas A; Barría MI
    Biol Res; 2005; 38(2-3):121-46. PubMed ID: 16238092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cap-independent translation is required for starvation-induced differentiation in yeast.
    Gilbert WV; Zhou K; Butler TK; Doudna JA
    Science; 2007 Aug; 317(5842):1224-7. PubMed ID: 17761883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viruses, IRESs, and a universal translation initiation mechanism.
    Roberts L; Wieden HJ
    Biotechnol Genet Eng Rev; 2018 Apr; 34(1):60-75. PubMed ID: 29804514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Canonical initiation factor requirements of the Myc family of internal ribosome entry segments.
    Spriggs KA; Cobbold LC; Jopling CL; Cooper RE; Wilson LA; Stoneley M; Coldwell MJ; Poncet D; Shen YC; Morley SJ; Bushell M; Willis AE
    Mol Cell Biol; 2009 Mar; 29(6):1565-74. PubMed ID: 19124605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of internal initiation to translation of cellular mRNAs containing IRESs.
    Mardanova ES; Zamchuk LA; Ravin NV
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):694-7. PubMed ID: 18631142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. m
    Coots RA; Liu XM; Mao Y; Dong L; Zhou J; Wan J; Zhang X; Qian SB
    Mol Cell; 2017 Nov; 68(3):504-514.e7. PubMed ID: 29107534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocistronic mRNAs containing defective hepatitis C virus-like picornavirus internal ribosome entry site elements in their 5' untranslated regions are efficiently translated in cells by a cap-dependent mechanism.
    Belsham GJ; Nielsen I; Normann P; Royall E; Roberts LO
    RNA; 2008 Aug; 14(8):1671-80. PubMed ID: 18567818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5' untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated.
    Dmitriev SE; Andreev DE; Terenin IM; Olovnikov IA; Prassolov VS; Merrick WC; Shatsky IN
    Mol Cell Biol; 2007 Jul; 27(13):4685-97. PubMed ID: 17470553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system.
    Bergamini G; Preiss T; Hentze MW
    RNA; 2000 Dec; 6(12):1781-90. PubMed ID: 11142378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.