These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29789494)

  • 1. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters.
    Xie J; Tian XF; He SG; Wei YL; Peng B; Wu ZQ
    Molecules; 2018 May; 23(6):. PubMed ID: 29789494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production.
    Eleutério Dos Santos CM; Pietrowski Gde A; Braga CM; Rossi MJ; Ninow J; Machado Dos Santos TP; Wosiacki G; Jorge RM; Nogueira A
    J Food Sci; 2015 Jun; 80(6):C1170-7. PubMed ID: 25920613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of fusel oil on animal hangover models.
    Hori H; Fujii W; Hatanaka Y; Suwa Y
    Alcohol Clin Exp Res; 2003 Aug; 27(8 Suppl):37S-41S. PubMed ID: 12960505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of intoxicating effects of liquor products on drunken mice.
    Wu Z; Tian X; He S; Quan L; Wei Y; Wu Z
    Medchemcomm; 2017 Jan; 8(1):122-129. PubMed ID: 30108697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products.
    Lachenmeier DW; Haupt S; Schulz K
    Regul Toxicol Pharmacol; 2008 Apr; 50(3):313-21. PubMed ID: 18295386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative and quantitative prediction of volatile compounds from initial amino acid profiles in Korean rice wine (makgeolli) model.
    Kang BS; Lee JE; Park HJ
    J Food Sci; 2014 Jun; 79(6):C1106-16. PubMed ID: 24888253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of acetaldehyde, methanol and fusel oils in distilled liquors and sakès by headspace gas chromatography.
    Qin Y; Shin JA; Lee KT
    Food Sci Biotechnol; 2020 Mar; 29(3):331-337. PubMed ID: 32257516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Illicit Liquor by Headspace Gas Chromatography-Mass Spectrometry (HS-GC-MS): A Preliminary Study.
    Punia BS; Yadav PK; Bumbrah GS; Sharma RM
    J AOAC Int; 2017 Jan; 100(1):109-125. PubMed ID: 28825540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic flavor types and component characteristics of Chinese traditional liquors: A review.
    Wei Y; Zou W; Shen CH; Yang JG
    J Food Sci; 2020 Dec; 85(12):4096-4107. PubMed ID: 33190291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of higher alcohols during indonesian tapé ketan fermentation.
    Cronk TC; Mattick LR; Steinkraus KH; Hackler LR
    Appl Environ Microbiol; 1979 May; 37(5):892-6. PubMed ID: 16345385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously deleting ADH2 and THI3 genes of Saccharomyces cerevisiae for reducing the yield of acetaldehyde and fusel alcohols.
    Wu L; Wen Y; Chen W; Yan T; Tian X; Zhou S
    FEMS Microbiol Lett; 2021 Aug; 368(15):. PubMed ID: 34410369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids.
    Jansen M; Veurink JH; Euverink GJ; Dijkhuizen L
    FEMS Yeast Res; 2003 May; 3(3):313-8. PubMed ID: 12689638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation.
    Li W; Wang JH; Zhang CY; Ma HX; Xiao DG
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):949-960. PubMed ID: 28176138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of low molecular weight alcohols including fusel oil in various samples by diethyl ether extraction and capillary gas chromatography.
    Woo KL
    J AOAC Int; 2005; 88(5):1419-27. PubMed ID: 16385992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Analysis of the Pharmacological Effects of Alcoholic Components in Maotai.
    Zhou W; Chen Z; Bao H; Zhang G; Liu Z
    J Food Sci; 2019 Jul; 84(7):1949-1956. PubMed ID: 31245855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.
    ter Schure EG; Flikweert MT; van Dijken JP; Pronk JT; Verrips CT
    Appl Environ Microbiol; 1998 Apr; 64(4):1303-7. PubMed ID: 9546164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of aromatic substances on the quality of wines and spirits].
    Goranov N
    Nahrung; 1983; 27(5):497-503. PubMed ID: 6888527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of aroma compounds of Chinese famous liquors by gas chromatography-mass spectrometry and flash GC electronic-nose.
    Xiao Z; Yu D; Niu Y; Chen F; Song S; Zhu J; Zhu G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():92-100. PubMed ID: 24333641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative determination of fusel alcohols in beer and fermenting wort.
    Chen EC; David JJ
    J Sci Food Agric; 1974 Nov; 25(11):1381-7. PubMed ID: 4437143
    [No Abstract]   [Full Text] [Related]  

  • 20. Compositional Differences and Similarities between Typical Chinese Baijiu and Western Liquor as Revealed by Mass Spectrometry-Based Metabolomics.
    Fang C; Du H; Jia W; Xu Y
    Metabolites; 2018 Dec; 9(1):. PubMed ID: 30577624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.