These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2978950)
1. Influence of water activity and temperature on the accumulation of zearalenone in corn. Montani ML; Vaamonde G; Resnik SL; Buera P Int J Food Microbiol; 1988 Feb; 6(1):1-8. PubMed ID: 2978950 [TBL] [Abstract][Full Text] [Related]
2. Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species. Jiménez M; Máñez M; Hernández E Int J Food Microbiol; 1996 Apr; 29(2-3):417-21. PubMed ID: 8796443 [TBL] [Abstract][Full Text] [Related]
3. The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B1 and zearalenone formation. Velluti A; Marín S; Bettucci L; Ramos AJ; Sanchis V Int J Food Microbiol; 2000 Jul; 59(1-2):59-66. PubMed ID: 10946839 [TBL] [Abstract][Full Text] [Related]
4. Influence of temperature, water activity and incubation time on fungal growth and production of ochratoxin A and zearalenone by toxigenic Aspergillus tubingensis and Fusarium incarnatum isolates in sorghum seeds. Lahouar A; Marin S; Crespo-Sempere A; Saïd S; Sanchis V Int J Food Microbiol; 2017 Feb; 242():53-60. PubMed ID: 27883966 [TBL] [Abstract][Full Text] [Related]
5. Impact of essential oils on growth rate, zearalenone and deoxynivalenol production by Fusarium graminearum under different temperature and water activity conditions in maize grain. Velluti A; Sanchis V; Ramos AJ; Turon C; Marín S J Appl Microbiol; 2004; 96(4):716-24. PubMed ID: 15012810 [TBL] [Abstract][Full Text] [Related]
6. Influence of the interactions among ecological variables in the characterization of zearalenone producing isolates of Fusarium spp. Llorens A; Mateo R; Hinojo MJ; Logrieco A; Jimenez M Syst Appl Microbiol; 2004 Mar; 27(2):253-60. PubMed ID: 15046314 [TBL] [Abstract][Full Text] [Related]
8. Production of deoxynivalenol and zearalenone by isolates of Fusarium graminearum Schw. Megalla SE; Bennett GA; Ellis JJ; Shotwell OI J Basic Microbiol; 1986; 26(7):415-9. PubMed ID: 2951515 [TBL] [Abstract][Full Text] [Related]
9. Effect of gamma-irradiation on F-2 and T-2 toxin production in corn and rice. Halász A; Badaway A; Sawinsky J; Kozma-Kovács E; Beczner J Folia Microbiol (Praha); 1989; 34(3):228-32. PubMed ID: 2530143 [TBL] [Abstract][Full Text] [Related]
10. Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of Fusarium graminearum on solid substrates. Greenhalgh R; Neish GA; Miller JD Appl Environ Microbiol; 1983 Sep; 46(3):625-9. PubMed ID: 6227284 [TBL] [Abstract][Full Text] [Related]
11. [Propionic acid preservation of corn following inoculation with molds and yeasts]. Müller HM; Thaler M Arch Tierernahr; 1981 Dec; 31(11-12):789-99. PubMed ID: 6212039 [TBL] [Abstract][Full Text] [Related]
12. The effects of "Gasol" grain preservative dosages on the growth of Fusarium graminearum and the quantity of the toxin zearalenone. Kallela K; Saastamoinen I Nord Vet Med; 1982; 34(4-5):124-9. PubMed ID: 6217444 [TBL] [Abstract][Full Text] [Related]
13. Decomposition of the Fusarium graminearum toxin zearalenone in storage conditions. Kallela K; Saastamoinen I Nord Vet Med; 1981; 33(9-11):454-60. PubMed ID: 6460219 [TBL] [Abstract][Full Text] [Related]
14. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology. Wu L; Qiu L; Zhang H; Sun J; Hu X; Wang B Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208576 [TBL] [Abstract][Full Text] [Related]
15. Elaboration of vomitoxin and zearalenone by Fusarium isolates and the biological activity of Fusarium-produced toxins. Vesonder RF; Ellis JJ; Rohwedder WK Appl Environ Microbiol; 1981 Dec; 42(6):1132-4. PubMed ID: 6459056 [TBL] [Abstract][Full Text] [Related]
16. Reduced contamination by the Fusarium mycotoxin zearalenone in maize kernels through genetic modification with a detoxification gene. Igawa T; Takahashi-Ando N; Ochiai N; Ohsato S; Shimizu T; Kudo T; Yamaguchi I; Kimura M Appl Environ Microbiol; 2007 Mar; 73(5):1622-9. PubMed ID: 17209063 [TBL] [Abstract][Full Text] [Related]
17. Effect of cycling temperatures on the production of deoxynivalenol and zearalenone by Fusarium graminearum NRRL 5883. Ryu D; Bullerman LB J Food Prot; 1999 Dec; 62(12):1451-5. PubMed ID: 10606150 [TBL] [Abstract][Full Text] [Related]
18. Water activity influence on aflatoxin accumulation in corn. Montani ML; Vaamonde G; Resnik SL; Buera P Int J Food Microbiol; 1988 Jun; 6(4):349-53. PubMed ID: 3275305 [TBL] [Abstract][Full Text] [Related]
19. Use of the insecticide naled to control zearalenone production. Berisford YC; Ayres JC J Agric Food Chem; 1976; 24(5):973-5. PubMed ID: 965609 [No Abstract] [Full Text] [Related]
20. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. Garcia D; Barros G; Chulze S; Ramos AJ; Sanchis V; Marín S J Sci Food Agric; 2012 Dec; 92(15):2952-9. PubMed ID: 22555960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]