BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 29789533)

  • 21. Design of a synthetic yeast genome.
    Richardson SM; Mitchell LA; Stracquadanio G; Yang K; Dymond JS; DiCarlo JE; Lee D; Huang CL; Chandrasegaran S; Cai Y; Boeke JD; Bader JS
    Science; 2017 Mar; 355(6329):1040-1044. PubMed ID: 28280199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells.
    Shah R; Li F; Voziyanova E; Voziyanov Y
    FEBS J; 2015 Sep; 282(17):3323-33. PubMed ID: 26077105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
    Dymond JS; Richardson SM; Coombes CE; Babatz T; Muller H; Annaluru N; Blake WJ; Schwerzmann JW; Dai J; Lindstrom DL; Boeke AC; Gottschling DE; Chandrasegaran S; Bader JS; Boeke JD
    Nature; 2011 Sep; 477(7365):471-6. PubMed ID: 21918511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Total synthesis of a eukaryotic chromosome: Redesigning and SCRaMbLE-ing yeast.
    Jovicevic D; Blount BA; Ellis T
    Bioessays; 2014 Sep; 36(9):855-60. PubMed ID: 25048260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds.
    Yuan J; Ching CB
    ACS Synth Biol; 2015 Jan; 4(1):23-31. PubMed ID: 24847678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.
    Siddiqui MS; Thodey K; Trenchard I; Smolke CD
    FEMS Yeast Res; 2012 Mar; 12(2):144-70. PubMed ID: 22136110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering the ribosomal DNA in a megabase synthetic chromosome.
    Zhang W; Zhao G; Luo Z; Lin Y; Wang L; Guo Y; Wang A; Jiang S; Jiang Q; Gong J; Wang Y; Hou S; Huang J; Li T; Qin Y; Dong J; Qin Q; Zhang J; Zou X; He X; Zhao L; Xiao Y; Xu M; Cheng E; Huang N; Zhou T; Shen Y; Walker R; Luo Y; Kuang Z; Mitchell LA; Yang K; Richardson SM; Wu Y; Li BZ; Yuan YJ; Yang H; Lin J; Chen GQ; Wu Q; Bader JS; Cai Y; Boeke JD; Dai J
    Science; 2017 Mar; 355(6329):. PubMed ID: 28280149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Counter-selection facilitated plasmid construction by homologous recombination in Saccharomyces cerevisiae.
    Anderson PR; Haj-Ahmad Y
    Biotechniques; 2003 Oct; 35(4):692-4, 696, 698. PubMed ID: 14579732
    [No Abstract]   [Full Text] [Related]  

  • 31. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening.
    Gowers GF; Chee SM; Bell D; Suckling L; Kern M; Tew D; McClymont DW; Ellis T
    Nat Commun; 2020 Feb; 11(1):868. PubMed ID: 32054834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence.
    Chan KM; Liu YT; Ma CH; Jayaram M; Sau S
    Plasmid; 2013 Jul; 70(1):2-17. PubMed ID: 23541845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae.
    Vanegas KG; Lehka BJ; Mortensen UH
    Microb Cell Fact; 2017 Feb; 16(1):25. PubMed ID: 28179021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic Genomes.
    Zhang W; Mitchell LA; Bader JS; Boeke JD
    Annu Rev Biochem; 2020 Jun; 89():77-101. PubMed ID: 32569517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthetic Biology of Yeast.
    Liu Z; Zhang Y; Nielsen J
    Biochemistry; 2019 Mar; 58(11):1511-1520. PubMed ID: 30618248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae.
    Xu Z; Brown WR
    BMC Biotechnol; 2016 Feb; 16():13. PubMed ID: 26860416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From gene editing to genome reconstitution: evolving techniques in yeast.
    Li C; Lou HQ
    Yi Chuan; 2015 Oct; 37(10):1021-8. PubMed ID: 26496754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PCR-based engineering of yeast genome.
    Petracek ME; Longtine MS
    Methods Enzymol; 2002; 350():445-69. PubMed ID: 12073329
    [No Abstract]   [Full Text] [Related]  

  • 40. Solving yeast jigsaw puzzles over a glass of wine: Synthetic genome engineering pioneers new possibilities for wine yeast research.
    Pretorius IS
    EMBO Rep; 2017 Nov; 18(11):1875-1884. PubMed ID: 29061873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.