These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 29789543)

  • 41. Design of a synthetic yeast genome.
    Richardson SM; Mitchell LA; Stracquadanio G; Yang K; Dymond JS; DiCarlo JE; Lee D; Huang CL; Chandrasegaran S; Cai Y; Boeke JD; Bader JS
    Science; 2017 Mar; 355(6329):1040-1044. PubMed ID: 28280199
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering the ribosomal DNA in a megabase synthetic chromosome.
    Zhang W; Zhao G; Luo Z; Lin Y; Wang L; Guo Y; Wang A; Jiang S; Jiang Q; Gong J; Wang Y; Hou S; Huang J; Li T; Qin Y; Dong J; Qin Q; Zhang J; Zou X; He X; Zhao L; Xiao Y; Xu M; Cheng E; Huang N; Zhou T; Shen Y; Walker R; Luo Y; Kuang Z; Mitchell LA; Yang K; Richardson SM; Wu Y; Li BZ; Yuan YJ; Yang H; Lin J; Chen GQ; Wu Q; Bader JS; Cai Y; Boeke JD; Dai J
    Science; 2017 Mar; 355(6329):. PubMed ID: 28280149
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring redundancy in the yeast genome: an improved strategy for use of the cre-loxP system.
    Delneri D; Tomlin GC; Wixon JL; Hutter A; Sefton M; Louis EJ; Oliver SG
    Gene; 2000 Jul; 252(1-2):127-35. PubMed ID: 10903444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A RAGE Based Strategy for the Genome Engineering of the Human Respiratory Pathogen
    Garcia-Morales L; Ruiz E; Gourgues G; Rideau F; Piñero-Lambea C; Lluch-Senar M; Blanchard A; Lartigue C
    ACS Synth Biol; 2020 Oct; 9(10):2737-2748. PubMed ID: 33017534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution.
    Chen S; Xie ZX; Yuan YJ
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32188997
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic chromosome evolves the yeast genome.
    Teng F; Li W; Zhou Q
    Sci China Life Sci; 2019 May; 62(5):708-709. PubMed ID: 30927171
    [No Abstract]   [Full Text] [Related]  

  • 48. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae.
    Xu Z; Brown WR
    BMC Biotechnol; 2016 Feb; 16():13. PubMed ID: 26860416
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multiplexed genome engineering and genotyping methods applications for synthetic biology and metabolic engineering.
    Wang HH; Church GM
    Methods Enzymol; 2011; 498():409-26. PubMed ID: 21601688
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SCRaMbLE does the yeast genome shuffle.
    Jones S
    Nat Biotechnol; 2018 Jun; 36(6):503. PubMed ID: 29874209
    [No Abstract]   [Full Text] [Related]  

  • 51. Large-scale genomic rearrangements boost SCRaMbLE in Saccharomyces cerevisiae.
    Cheng L; Zhao S; Li T; Hou S; Luo Z; Xu J; Yu W; Jiang S; Monti M; Schindler D; Zhang W; Hou C; Ma Y; Cai Y; Boeke JD; Dai J
    Nat Commun; 2024 Jan; 15(1):770. PubMed ID: 38278805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors.
    Naseri G; Behrend J; Rieper L; Mueller-Roeber B
    Nat Commun; 2019 Jun; 10(1):2615. PubMed ID: 31197154
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A vector set for systematic metabolic engineering in Saccharomyces cerevisiae.
    Fang F; Salmon K; Shen MW; Aeling KA; Ito E; Irwin B; Tran UP; Hatfield GW; Da Silva NA; Sandmeyer S
    Yeast; 2011 Feb; 28(2):123-36. PubMed ID: 20936606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae.
    Xie W; Liu M; Lv X; Lu W; Gu J; Yu H
    Biotechnol Bioeng; 2014 Jan; 111(1):125-33. PubMed ID: 23860829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cre/loxP-mediated in vivo excision of large segments from yeast genome and their amplification based on the 2microm plasmid-derived system.
    Yoon YG; Pósfai G; Szybalski W; Kim SC
    Gene; 1998 Nov; 223(1-2):67-76. PubMed ID: 9858689
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast.
    Qi DD; Jin J; Liu D; Jia B; Yuan YJ
    Microb Cell Fact; 2020 May; 19(1):103. PubMed ID: 32398013
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Puromycin- and methotrexate-resistance cassettes and optimized Cre-recombinase expression plasmids for use in yeast.
    MacDonald C; Piper RC
    Yeast; 2015 May; 32(5):423-38. PubMed ID: 25688547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.
    Guo Y; Dong J; Zhou T; Auxillos J; Li T; Zhang W; Wang L; Shen Y; Luo Y; Zheng Y; Lin J; Chen GQ; Wu Q; Cai Y; Dai J
    Nucleic Acids Res; 2015 Jul; 43(13):e88. PubMed ID: 25956650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.