BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29789590)

  • 21. Expression of Saccharomyces cerevisiae MATa and MAT alpha enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates.
    Fasullo M; Bennett T; Dave P
    Mutat Res; 1999 Jan; 433(1):33-44. PubMed ID: 10047777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid Colorimetric Detection of Genome Evolution in SCRaMbLEd Synthetic
    Wightman ELI; Kroukamp H; Pretorius IS; Paulsen IT; Nevalainen HKM
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33271913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae.
    Lin Q; Qi H; Wu Y; Yuan Y
    Sci Rep; 2015 Oct; 5():15249. PubMed ID: 26477943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening.
    Gowers GF; Chee SM; Bell D; Suckling L; Kern M; Tew D; McClymont DW; Ellis T
    Nat Commun; 2020 Feb; 11(1):868. PubMed ID: 32054834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D organization of synthetic and scrambled chromosomes.
    Mercy G; Mozziconacci J; Scolari VF; Yang K; Zhao G; Thierry A; Luo Y; Mitchell LA; Shen M; Shen Y; Walker R; Zhang W; Wu Y; Xie ZX; Luo Z; Cai Y; Dai J; Yang H; Yuan YJ; Boeke JD; Bader JS; Muller H; Koszul R
    Science; 2017 Mar; 355(6329):. PubMed ID: 28280150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stringent mating-type-regulated auxotrophy increases the accuracy of systematic genetic interaction screens with Saccharomyces cerevisiae mutant arrays.
    Singh I; Pass R; Togay SO; Rodgers JW; Hartman JL
    Genetics; 2009 Jan; 181(1):289-300. PubMed ID: 18957706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compacting a synthetic yeast chromosome arm.
    Luo Z; Yu K; Xie S; Monti M; Schindler D; Fang Y; Zhao S; Liang Z; Jiang S; Luan M; Xiao C; Cai Y; Dai J
    Genome Biol; 2021 Jan; 22(1):5. PubMed ID: 33397424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of heterozygosity by SCRaMbLEing.
    Li Y; Wu Y; Ma L; Guo Z; Xiao W; Yuan Y
    Sci China Life Sci; 2019 Mar; 62(3):381-393. PubMed ID: 30900161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation.
    Kim SR; Lee KS; Kong II; Lesmana A; Lee WH; Seo JH; Kweon DH; Jin YS
    J Biotechnol; 2013 Mar; 164(1):105-11. PubMed ID: 23376240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural Variations and Adaptations of Synthetic Chromosome Ends Driven by SCRaMbLE in Haploid and Diploid Yeasts.
    Xiong Y; Zhang H; Zhou S; Ma L; Xiao W; Wu Y; Yuan YJ
    ACS Synth Biol; 2023 Mar; 12(3):689-699. PubMed ID: 36821394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing eukaryotic genome functions with synthetic chromosomes.
    Luo Z; Hoffmann SA; Jiang S; Cai Y; Dai J
    Exp Cell Res; 2020 May; 390(1):111936. PubMed ID: 32165165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ploidy influences cellular responses to gross chromosomal rearrangements in Saccharomyces cerevisiae.
    Jung PP; Fritsch ES; Blugeon C; Souciet JL; Potier S; Lemoine S; Schacherer J; de Montigny J
    BMC Genomics; 2011 Jun; 12():331. PubMed ID: 21711526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae).
    Mable BK; Otto SP
    Genet Res; 2001 Feb; 77(1):9-26. PubMed ID: 11279834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthetic Genomics: Rewriting the Genome Chromosome by Chromosome.
    van der Sloot A; Tyers M
    Mol Cell; 2017 May; 66(4):441-443. PubMed ID: 28525738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovering and genotyping genomic structural variations by yeast genome synthesis and inducible evolution.
    Chen S; Xie ZX; Yuan YJ
    FEMS Yeast Res; 2020 Mar; 20(2):. PubMed ID: 32188997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation.
    Ambrona J; Ramírez M
    Appl Environ Microbiol; 2007 Apr; 73(8):2486-90. PubMed ID: 17322328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization.
    Dymond J; Boeke J
    Bioeng Bugs; 2012; 3(3):168-71. PubMed ID: 22572789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct induction of tetraploids or homozygous diploids in the industrial yeast Saccharomyces cerevisiae by hydrostatic pressure.
    Hamada K; Nakatomi Y; Shimada S
    Curr Genet; 1992 Nov; 22(5):371-6. PubMed ID: 1423724
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial conversion of the mating-type of Saccharomyces cerevisiae without autopolyploidization.
    Fukuda N; Matsukura S; Honda S
    ACS Synth Biol; 2013 Dec; 2(12):697-704. PubMed ID: 23654260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production.
    Argueso JL; Carazzolle MF; Mieczkowski PA; Duarte FM; Netto OV; Missawa SK; Galzerani F; Costa GG; Vidal RO; Noronha MF; Dominska M; Andrietta MG; Andrietta SR; Cunha AF; Gomes LH; Tavares FC; Alcarde AR; Dietrich FS; McCusker JH; Petes TD; Pereira GA
    Genome Res; 2009 Dec; 19(12):2258-70. PubMed ID: 19812109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.