BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29789594)

  • 1. In vitro DNA SCRaMbLE.
    Wu Y; Zhu RY; Mitchell LA; Ma L; Liu R; Zhao M; Jia B; Xu H; Li YX; Yang ZM; Ma Y; Li X; Liu H; Liu D; Xiao WH; Zhou X; Li BZ; Yuan YJ; Boeke JD
    Nat Commun; 2018 May; 9(1):1935. PubMed ID: 29789594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods.
    Liu W; Luo Z; Wang Y; Pham NT; Tuck L; Pérez-Pi I; Liu L; Shen Y; French C; Auer M; Marles-Wright J; Dai J; Cai Y
    Nat Commun; 2018 May; 9(1):1936. PubMed ID: 29789543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast.
    Swidah R; Auxillos J; Liu W; Jones S; Chan TF; Dai J; Cai Y
    Methods Mol Biol; 2020; 2205():305-327. PubMed ID: 32809206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCRaMbLEing to understand and exploit structural variation in genomes.
    Steensels J; Gorkovskiy A; Verstrepen KJ
    Nat Commun; 2018 May; 9(1):1937. PubMed ID: 29789533
    [No Abstract]   [Full Text] [Related]  

  • 5. Building better yeast.
    Nat Commun; 2018 May; 9(1):1939. PubMed ID: 29789549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterozygous diploid and interspecies SCRaMbLEing.
    Shen MJ; Wu Y; Yang K; Li Y; Xu H; Zhang H; Li BZ; Li X; Xiao WH; Zhou X; Mitchell LA; Bader JS; Yuan Y; Boeke JD
    Nat Commun; 2018 May; 9(1):1934. PubMed ID: 29789590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precise control of SCRaMbLE in synthetic haploid and diploid yeast.
    Jia B; Wu Y; Li BZ; Mitchell LA; Liu H; Pan S; Wang J; Zhang HR; Jia N; Li B; Shen M; Xie ZX; Liu D; Cao YX; Li X; Zhou X; Qi H; Boeke JD; Yuan YJ
    Nat Commun; 2018 May; 9(1):1933. PubMed ID: 29789567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.
    Hochrein L; Mitchell LA; Schulz K; Messerschmidt K; Mueller-Roeber B
    Nat Commun; 2018 May; 9(1):1931. PubMed ID: 29789561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome.
    Blount BA; Gowers GF; Ho JCH; Ledesma-Amaro R; Jovicevic D; McKiernan RM; Xie ZX; Li BZ; Yuan YJ; Ellis T
    Nat Commun; 2018 May; 9(1):1932. PubMed ID: 29789540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design.
    Dymond JS; Richardson SM; Coombes CE; Babatz T; Muller H; Annaluru N; Blake WJ; Schwerzmann JW; Dai J; Lindstrom DL; Boeke AC; Gottschling DE; Chandrasegaran S; Bader JS; Boeke JD
    Nature; 2011 Sep; 477(7365):471-6. PubMed ID: 21918511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal Rearrangements of Synthetic Yeast by SCRaMbLE.
    Luo Z; Jiang S; Dai J
    Methods Mol Biol; 2021; 2196():153-165. PubMed ID: 32889719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.
    Otero JM; Vongsangnak W; Asadollahi MA; Olivares-Hernandes R; Maury J; Farinelli L; Barlocher L; Osterås M; Schalk M; Clark A; Nielsen J
    BMC Genomics; 2010 Dec; 11():723. PubMed ID: 21176163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved betulinic acid biosynthesis using synthetic yeast chromosome recombination and semi-automated rapid LC-MS screening.
    Gowers GF; Chee SM; Bell D; Suckling L; Kern M; Tew D; McClymont DW; Ellis T
    Nat Commun; 2020 Feb; 11(1):868. PubMed ID: 32054834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total synthesis of a eukaryotic chromosome: Redesigning and SCRaMbLE-ing yeast.
    Jovicevic D; Blount BA; Ellis T
    Bioessays; 2014 Sep; 36(9):855-60. PubMed ID: 25048260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparing Mate-Paired Illumina Libraries Using Cre Recombinase.
    Peng Z; Nath N; Zhao Z; Froula JL; Cheng JF; Chen F
    Methods Mol Biol; 2017; 1642():247-261. PubMed ID: 28815505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae.
    Xie W; Liu M; Lv X; Lu W; Gu J; Yu H
    Biotechnol Bioeng; 2014 Jan; 111(1):125-33. PubMed ID: 23860829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds.
    Yuan J; Ching CB
    ACS Synth Biol; 2015 Jan; 4(1):23-31. PubMed ID: 24847678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous and Sequential Integration by Cre/
    Choi HJ; Kim YH
    J Microbiol Biotechnol; 2018 May; 28(5):826-830. PubMed ID: 29539879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways.
    Liu W; Tuck LR; Wright JM; Cai Y
    Methods Mol Biol; 2017; 1642():285-302. PubMed ID: 28815507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.