These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29789594)

  • 41. β-Carotene production by Saccharomyces cerevisiae with regard to plasmid stability and culture media.
    Lange N; Steinbüchel A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1611-22. PubMed ID: 21573686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methodological advances enabled by the construction of a synthetic yeast genome.
    Schindler D; Walker RSK; Cai Y
    Cell Rep Methods; 2024 Apr; 4(4):100761. PubMed ID: 38653205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of a synthetic yeast genome.
    Richardson SM; Mitchell LA; Stracquadanio G; Yang K; Dymond JS; DiCarlo JE; Lee D; Huang CL; Chandrasegaran S; Cai Y; Boeke JD; Bader JS
    Science; 2017 Mar; 355(6329):1040-1044. PubMed ID: 28280199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.
    Du J; Yuan Y; Si T; Lian J; Zhao H
    Nucleic Acids Res; 2012 Oct; 40(18):e142. PubMed ID: 22718979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ring synthetic chromosome V SCRaMbLE.
    Wang J; Xie ZX; Ma Y; Chen XR; Huang YQ; He B; Bin Jia ; Li BZ; Yuan YJ
    Nat Commun; 2018 Sep; 9(1):3783. PubMed ID: 30224715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic chromosome evolves the yeast genome.
    Teng F; Li W; Zhou Q
    Sci China Life Sci; 2019 May; 62(5):708-709. PubMed ID: 30927171
    [No Abstract]   [Full Text] [Related]  

  • 47. SCRaMbLEing of a Synthetic Yeast Chromosome with Clustered Essential Genes Reveals Synthetic Lethal Interactions.
    Wang P; Xu H; Li H; Chen H; Zhou S; Tian F; Li BZ; Bo X; Wu Y; Yuan YJ
    ACS Synth Biol; 2020 May; 9(5):1181-1189. PubMed ID: 32268063
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways.
    Shao Z; Zhao H; Zhao H
    Nucleic Acids Res; 2009 Feb; 37(2):e16. PubMed ID: 19074487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering the ribosomal DNA in a megabase synthetic chromosome.
    Zhang W; Zhao G; Luo Z; Lin Y; Wang L; Guo Y; Wang A; Jiang S; Jiang Q; Gong J; Wang Y; Hou S; Huang J; Li T; Qin Y; Dong J; Qin Q; Zhang J; Zou X; He X; Zhao L; Xiao Y; Xu M; Cheng E; Huang N; Zhou T; Shen Y; Walker R; Luo Y; Kuang Z; Mitchell LA; Yang K; Richardson SM; Wu Y; Li BZ; Yuan YJ; Yang H; Lin J; Chen GQ; Wu Q; Bader JS; Cai Y; Boeke JD; Dai J
    Science; 2017 Mar; 355(6329):. PubMed ID: 28280149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors.
    Naseri G; Behrend J; Rieper L; Mueller-Roeber B
    Nat Commun; 2019 Jun; 10(1):2615. PubMed ID: 31197154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae.
    Mitchell LA; Chuang J; Agmon N; Khunsriraksakul C; Phillips NA; Cai Y; Truong DM; Veerakumar A; Wang Y; Mayorga M; Blomquist P; Sadda P; Trueheart J; Boeke JD
    Nucleic Acids Res; 2015 Jul; 43(13):6620-30. PubMed ID: 25956652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using the Cre-lox system to randomize target gene expression states and generate diverse phenotypes.
    Niesner B; Maheshri N
    Biotechnol Bioeng; 2013 Oct; 110(10):2677-86. PubMed ID: 23733452
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler.
    Shao Z; Luo Y; Zhao H
    Mol Biosyst; 2011 Apr; 7(4):1056-9. PubMed ID: 21327279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid.
    Matsuzaki H; Nakajima R; Nishiyama J; Araki H; Oshima Y
    J Bacteriol; 1990 Feb; 172(2):610-8. PubMed ID: 2404945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design.
    Dahabieh MS; Thevelein JM; Gibson B
    Trends Biotechnol; 2020 Mar; 38(3):241-253. PubMed ID: 31653446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improvement of a yeast self-excising integrative vector by prevention of expression leakage of the intronated Cre recombinase gene during plasmid maintenance in Escherichia coli.
    Agaphonov MO
    FEMS Microbiol Lett; 2017 Dec; 364(22):. PubMed ID: 29069450
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pathway swapping: Toward modular engineering of essential cellular processes.
    Kuijpers NG; Solis-Escalante D; Luttik MA; Bisschops MM; Boonekamp FJ; van den Broek M; Pronk JT; Daran JM; Daran-Lapujade P
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15060-15065. PubMed ID: 27956602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. YeastFab: High-Throughput Genetic Parts Construction, Measurement, and Pathway Engineering in Yeast.
    Garcia-Ruiz E; Auxillos J; Li T; Dai J; Cai Y
    Methods Enzymol; 2018; 608():277-306. PubMed ID: 30173765
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.