These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 29789633)

  • 1. 3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.
    Ramadan M; Abdellah AM; Mohamed SG; Allam NK
    Sci Rep; 2018 May; 8(1):7988. PubMed ID: 29789633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binder-Free Electrospun Ni-Mn-O Nanofibers Embedded in Carbon Shells with Ultrahigh Energy and Power Densities for Highly Stable Next-Generation Energy Storage Devices.
    Ghanem LG; Sayed DM; Ahmed N; Ramadan M; Allam NK
    Langmuir; 2021 May; 37(17):5161-5171. PubMed ID: 33876646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CoNi
    Li L; Hu H; Ding S; Yan X; Wang C
    Nanotechnology; 2019 Dec; 30(49):495404. PubMed ID: 31469087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Production of Mn₃O₄/rGO as an Efficient Electrode Material for Supercapacitor by Flame Plasma.
    Zhou Y; Guo L; Shi W; Zou X; Xiang B; Xing S
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29795008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic MOF Nanosheets Decorated on Electrospun Nanofibers for High-Performance Asymmetric Supercapacitors.
    Tian D; Song N; Zhong M; Lu X; Wang C
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1280-1291. PubMed ID: 31834776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance.
    Chen X; Zhao B; Cai Y; Tadé MO; Shao Z
    Nanoscale; 2013 Dec; 5(24):12589-97. PubMed ID: 24177752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Radiation Method for Preparing MnO₂/BC Monolith Hybrids with Outstanding Supercapacitance Performance.
    Yang F; Liu X; Mi R; Yuan L; Yang X; Zhong M; Fu Z; Wang C; Tang Y
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30011939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT.
    Liu Y; Li G; Guo Y; Ying Y; Peng X
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14043-14050. PubMed ID: 28387503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Effective Electrodeposition Mode for Porous MnO₂/Ni Foam Composite for Asymmetric Supercapacitors.
    Tsai YC; Yang WD; Lee KC; Huang CM
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO
    Ghosh K; Yue CY; Sk MM; Jena RK
    ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercapacitor Electrodes Based on High-Purity Electrospun Polyaniline and Polyaniline-Carbon Nanotube Nanofibers.
    Simotwo SK; DelRe C; Kalra V
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21261-9. PubMed ID: 27467445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass-Derived Nitrogen-Doped Carbon Nanofiber Network: A Facile Template for Decoration of Ultrathin Nickel-Cobalt Layered Double Hydroxide Nanosheets as High-Performance Asymmetric Supercapacitor Electrode.
    Lai F; Miao YE; Zuo L; Lu H; Huang Y; Liu T
    Small; 2016 Jun; 12(24):3235-44. PubMed ID: 27135301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.
    Zhao Y; Ran W; He J; Huang Y; Liu Z; Liu W; Tang Y; Zhang L; Gao D; Gao F
    Small; 2015 Mar; 11(11):1310-9. PubMed ID: 25384679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers.
    Cai J; Niu H; Li Z; Du Y; Cizek P; Xie Z; Xiong H; Lin T
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14946-53. PubMed ID: 26087346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities.
    Li M; Lei W; Yu Y; Yang W; Li J; Chen D; Xu S; Feng M; Li H
    Nanoscale; 2018 Aug; 10(34):15926-15931. PubMed ID: 30113063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Fe
    Jiang H; Niu H; Yang X; Sun Z; Li F; Wang Q; Qu F
    Chemistry; 2018 Jul; 24(42):10683-10688. PubMed ID: 29660802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Supercapacitor Electrodes Based on Carbon Cloth-Supported LaMnO
    Ma PP; Lei N; Yu B; Liu YK; Jiang GH; Dai JM; Li SH; Lu QL
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31771280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.
    Ma G; Hua F; Sun K; Fenga E; Peng H; Zhang Z; Lei Z
    R Soc Open Sci; 2018 Jan; 5(1):171186. PubMed ID: 29410830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance asymmetric supercapacitor based hierarchical NiCo
    El-Deen AG; Hussein El-Shafei M; Hessein A; Hassanin AH; Shaalan NM; El-Moneim AA
    Nanotechnology; 2020 May; 31(36):365404. PubMed ID: 32470955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.