These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 29789674)
1. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior. Li Z; Huang S; Liu Y; Yao B; Hu T; Shi H; Xie J; Fu X Sci Rep; 2018 May; 8(1):8020. PubMed ID: 29789674 [TBL] [Abstract][Full Text] [Related]
2. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
3. Biofabrication of skin tissue constructs using alginate, gelatin and diethylaminoethyl cellulose bioink. Somasekharan LT; Raju R; Kumar S; Geevarghese R; Nair RP; Kasoju N; Bhatt A Int J Biol Macromol; 2021 Oct; 189():398-409. PubMed ID: 34419550 [TBL] [Abstract][Full Text] [Related]
4. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
5. Properties of an alginate-gelatin-based bioink and its potential impact on cell migration, proliferation, and differentiation. Cheng L; Yao B; Hu T; Cui X; Shu X; Tang S; Wang R; Wang Y; Liu Y; Song W; Fu X; Li H; Huang S Int J Biol Macromol; 2019 Aug; 135():1107-1113. PubMed ID: 31173833 [TBL] [Abstract][Full Text] [Related]
6. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
7. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs. Chrungoo S; Bharadwaj T; Verma D Int J Biol Macromol; 2024 May; 266(Pt 1):131123. PubMed ID: 38537853 [TBL] [Abstract][Full Text] [Related]
8. Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo. Yao B; Hu T; Cui X; Song W; Fu X; Huang S Biofabrication; 2019 Sep; 11(4):045020. PubMed ID: 31387086 [TBL] [Abstract][Full Text] [Related]
9. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
10. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Wu Y; Wenger A; Golzar H; Tang XS Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046 [TBL] [Abstract][Full Text] [Related]
12. Composite bioink incorporating cell-laden liver decellularized extracellular matrix for bioprinting of scaffolds for bone tissue engineering. You P; Sun H; Chen H; Li C; Mao Y; Zhang T; Yang H; Dong H Biomater Adv; 2024 Dec; 165():214017. PubMed ID: 39236580 [TBL] [Abstract][Full Text] [Related]
13. Characterization of two different alginate-based bioinks and the influence of melanoma growth within. Schipka R; Heltmann-Meyer S; Schneidereit D; Friedrich O; Röder J; Boccaccini AR; Schrüfer S; Schubert DW; Horch RE; Bosserhoff AK; Arkudas A; Kengelbach-Weigand A; Schmid R Sci Rep; 2024 Jun; 14(1):12945. PubMed ID: 38839791 [TBL] [Abstract][Full Text] [Related]
14. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
15. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
16. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Zhao Y; Li Y; Mao S; Sun W; Yao R Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399 [TBL] [Abstract][Full Text] [Related]
17. Solvent types used for the preparation of hydrogels determine their mechanical properties and influence cell viability through gelatine and calcium ions release. Rosińska K; Bartniak M; Wierzbicka A; Sobczyk-Guzenda A; Bociaga D J Biomed Mater Res B Appl Biomater; 2023 Feb; 111(2):314-330. PubMed ID: 36056675 [TBL] [Abstract][Full Text] [Related]
18. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
19. The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique. Tian Y; Liu M; Liu Y; Shi C; Wang Y; Liu T; Huang Y; Zhong P; Dai J; Liu X J Biomed Mater Res A; 2021 Jul; 109(7):1209-1219. PubMed ID: 33021062 [TBL] [Abstract][Full Text] [Related]
20. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]