BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 29789820)

  • 1. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein.
    Sengupta I; Udgaonkar JB
    Chem Commun (Camb); 2018 Jun; 54(49):6230-6242. PubMed ID: 29789820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Seeds to Fibrils and Back: Fragmentation as an Overlooked Step in the Propagation of Prions and Prion-Like Proteins.
    Marrero-Winkens C; Sankaran C; Schätzl HM
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32927676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation.
    Mishra R; Elgland M; Begum A; Fyrner T; Konradsson P; Nyström S; Hammarström P
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):909-921. PubMed ID: 30935958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases.
    Sarnataro D
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30304819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of misfolding of the human prion protein revealed by a pathological mutation.
    Sanz-Hernández M; Barritt JD; Sobek J; Hornemann S; Aguzzi A; De Simone A
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33731477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Mechanism of Barriers to Interspecies Seeding Transmissibility of Full-Length Prion Protein Amyloid.
    Ma T; Deng J; Ma S; Zhao W; Chang Z; Yu K; Yang J
    Chembiochem; 2019 Nov; 20(21):2757-2766. PubMed ID: 31161647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid formation characteristics of GNNQQNY from yeast prion protein Sup35 and its seeding with heterogeneous polypeptides.
    Haratake M; Takiguchi T; Masuda N; Yoshida S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2017 Jan; 149():72-79. PubMed ID: 27736724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Structural Characterization of the Precursor Conformation of the Prion Protein which Directly Initiates Misfolding and Oligomerization.
    Moulick R; Udgaonkar JB
    J Mol Biol; 2017 Mar; 429(6):886-899. PubMed ID: 28147229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The protonation state of histidine 111 regulates the aggregation of the evolutionary most conserved region of the human prion protein.
    Fonseca-Ornelas L; Zweckstetter M
    Protein Sci; 2016 Aug; 25(8):1563-7. PubMed ID: 27184108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer.
    Kakuda K; Yamaguchi KI; Kuwata K; Honda R
    Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation.
    Glaves JP; Ladner-Keay CL; Bjorndahl TC; Wishart DS; Sykes BD
    Biochim Biophys Acta Proteins Proteom; 2018 Sep; 1866(9):982-988. PubMed ID: 29935976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid fibrils from the N-terminal prion protein fragment are infectious.
    Choi JK; Cali I; Surewicz K; Kong Q; Gambetti P; Surewicz WK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13851-13856. PubMed ID: 27849581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation.
    Torrent J; Alvarez-Martinez MT; Harricane MC; Heitz F; Liautard JP; Balny C; Lange R
    Biochemistry; 2004 Jun; 43(22):7162-70. PubMed ID: 15170353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-Dependent Structural Variability of Prion Protein Amyloid Fibrils.
    Ziaunys M; Sakalauskas A; Mikalauskaite K; Snieckute R; Smirnovas V
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations.
    Palaniappan C; Narayanan RC; Sekar K
    ACS Chem Neurosci; 2021 Aug; 12(15):2810-2819. PubMed ID: 34296847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic Mutations within the Disordered Palindromic Region of the Prion Protein Induce Structure Therein and Accelerate the Formation of Misfolded Oligomers.
    Sabareesan AT; Udgaonkar JB
    J Mol Biol; 2016 Oct; 428(20):3935-3947. PubMed ID: 27545411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Location of the cross-β structure in prion fibrils: A search by seeding and electron spin resonance spectroscopy.
    Chu BK; Tsai RF; Hung CL; Kuo YH; Chen EH; Chiang YW; Chan SI; Chen RP
    Protein Sci; 2022 Jun; 31(6):e4326. PubMed ID: 35634767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Pressure Response of Amyloid Folds.
    Torrent J; Martin D; Igel-Egalon A; Béringue V; Rezaei H
    Viruses; 2019 Feb; 11(3):. PubMed ID: 30823361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Positively Charged Cluster in the N-terminal Disordered Region may Affect Prion Protein Misfolding: Cryo-EM Structure of Hamster PrP(23-144) Fibrils.
    Lee CH; Saw JE; Chen EH; Wang CH; Uchihashi T; Chen RP
    J Mol Biol; 2024 Jun; 436(11):168576. PubMed ID: 38641239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.