These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29790250)

  • 1. Photochemical Construction of Carbonitride Structures for Red-Light Redox Catalysis.
    Yang P; Wang R; Zhou M; Wang X
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8674-8677. PubMed ID: 29790250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis and enhanced visible-light photocatalysis of graphitic carbon nitride composite semiconductors.
    Li H; Liu Y; Gao X; Fu C; Wang X
    ChemSusChem; 2015 Apr; 8(7):1189-96. PubMed ID: 25727782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction.
    Wang S; Lin J; Wang X
    Phys Chem Chem Phys; 2014 Jul; 16(28):14656-60. PubMed ID: 24921181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of graphitic carbon nitride (g-C₃N₄)/WO₃ composites and enhanced visible-light-driven photodegradation of acetaldehyde gas.
    Katsumata K; Motoyoshi R; Matsushita N; Okada K
    J Hazard Mater; 2013 Sep; 260():475-82. PubMed ID: 23811369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI).
    Shen L; Liang S; Wu W; Liang R; Wu L
    Dalton Trans; 2013 Oct; 42(37):13649-57. PubMed ID: 23903996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoredox Catalytic Organic Transformations using Heterogeneous Carbon Nitrides.
    Savateev A; Ghosh I; König B; Antonietti M
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):15936-15947. PubMed ID: 30066478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Visible-Light-Active Heterojunction with Enhanced Photocatalytic Hydrogen Generation.
    Adhikari SP; Hood ZD; More KL; Chen VW; Lachgar A
    ChemSusChem; 2016 Jul; 9(14):1869-79. PubMed ID: 27282318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphitic Carbon Nitride Film: An Emerging Star for Catalytic and Optoelectronic Applications.
    Bian J; Huang C; Zhang RQ
    ChemSusChem; 2016 Oct; 9(19):2723-2735. PubMed ID: 27624463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution.
    Bhunia MK; Yamauchi K; Takanabe K
    Angew Chem Int Ed Engl; 2014 Oct; 53(41):11001-5. PubMed ID: 25124195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO
    Hong X; Tan J; Zhu H; Feng N; Yang Y; Irvine JTS; Wang L; Liu G; Cheng HM
    Chemistry; 2019 Feb; 25(7):1787-1794. PubMed ID: 30489669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nitride for the selective oxidation of aromatic alcohols in water under visible light.
    Long B; Ding Z; Wang X
    ChemSusChem; 2013 Nov; 6(11):2074-8. PubMed ID: 24039175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Layered Carbonitrides from Biotic Molecules for Photoredox Transformations.
    Yang C; Wang B; Zhang L; Yin L; Wang X
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6627-6631. PubMed ID: 28471063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of Wide-Band-Gap Oxide Semiconductors with Cobalt Hydroxide Nanoclusters for Visible-Light Water Oxidation.
    Maeda K; Ishimaki K; Tokunaga Y; Lu D; Eguchi M
    Angew Chem Int Ed Engl; 2016 Jul; 55(29):8309-13. PubMed ID: 27225394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts.
    Liu M; Qiu X; Miyauchi M; Hashimoto K
    J Am Chem Soc; 2013 Jul; 135(27):10064-72. PubMed ID: 23768256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances.
    Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.
    Hu W; Lin L; Zhang R; Yang C; Yang J
    J Am Chem Soc; 2017 Nov; 139(43):15429-15436. PubMed ID: 29027456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO(2) reduction.
    Maeda K; Sekizawa K; Ishitani O
    Chem Commun (Camb); 2013 Oct; 49(86):10127-9. PubMed ID: 24048317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.