These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29790274)

  • 1. Polymer scaffolds for pancreatic islet transplantation - Progress and challenges.
    Smink AM; de Haan BJ; Lakey JRT; de Vos P
    Am J Transplant; 2018 Sep; 18(9):2113-2119. PubMed ID: 29790274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttransplant oxygen inhalation improves the outcome of subcutaneous islet transplantation: A promising clinical alternative to the conventional intrahepatic site.
    Komatsu H; Rawson J; Barriga A; Gonzalez N; Mendez D; Li J; Omori K; Kandeel F; Mullen Y
    Am J Transplant; 2018 Apr; 18(4):832-842. PubMed ID: 28898528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation.
    Smink AM; de Haan BJ; Paredes-Juarez GA; Wolters AH; Kuipers J; Giepmans BN; Schwab L; Engelse MA; van Apeldoorn AA; de Koning E; Faas MM; de Vos P
    Biomed Mater; 2016 May; 11(3):035006. PubMed ID: 27173149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Retrievable, Efficacious Polymeric Scaffold for Subcutaneous Transplantation of Rat Pancreatic Islets.
    Smink AM; Hertsig DT; Schwab L; van Apeldoorn AA; de Koning E; Faas MM; de Haan BJ; de Vos P
    Ann Surg; 2017 Jul; 266(1):149-157. PubMed ID: 27429018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of tissue-engineered islet graft viability by fluorine magnetic resonance spectroscopy.
    Suszynski TM; Avgoustiniatos ES; Stein SA; Falde EJ; Hammer BE; Papas KK
    Transplant Proc; 2011 Nov; 43(9):3221-5. PubMed ID: 22099762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Efficacy of a Prevascularized, Retrievable Poly(D,L,-lactide-co-ε-caprolactone) Subcutaneous Scaffold as Transplantation Site for Pancreatic Islets.
    Smink AM; Li S; Hertsig DT; de Haan BJ; Schwab L; van Apeldoorn AA; de Koning E; Faas MM; Lakey JR; de Vos P
    Transplantation; 2017 Apr; 101(4):e112-e119. PubMed ID: 28207637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved human pancreatic islet isolation for a prospective cohort study of islet transplantation vs best medical therapy in type 1 diabetes mellitus.
    Warnock GL; Meloche RM; Thompson D; Shapiro RJ; Fung M; Ao Z; Ho S; He Z; Dai LJ; Young L; Blackburn L; Kozak S; Kim PT; Al-Adra D; Johnson JD; Liao YH; Elliott T; Verchere CB
    Arch Surg; 2005 Aug; 140(8):735-44. PubMed ID: 16103282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing the Foreign Body Reaction in Marginal Mass Device-less Subcutaneous Islet Transplantation in Mice.
    Pepper AR; Pawlick R; Bruni A; Gala-Lopez B; Wink J; Rafiei Y; Bral M; Abualhassan N; Shapiro AM
    Transplantation; 2016 Jul; 100(7):1474-9. PubMed ID: 27136258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation.
    Blomeier H; Zhang X; Rives C; Brissova M; Hughes E; Baker M; Powers AC; Kaufman DB; Shea LD; Lowe WL
    Transplantation; 2006 Aug; 82(4):452-9. PubMed ID: 16926587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of marginal mass required for successful islet transplantation in a diabetic rat model using adipose tissue-derived mesenchymal stromal cells.
    Navaei-Nigjeh M; Moloudizargari M; Baeeri M; Gholami M; Lotfibakhshaiesh N; Soleimani M; Vasheghani-Farahani E; Ai J; Abdollahi M
    Cytotherapy; 2018 Sep; 20(9):1124-1142. PubMed ID: 30068495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models.
    Gibly RF; Zhang X; Graham ML; Hering BJ; Kaufman DB; Lowe WL; Shea LD
    Biomaterials; 2011 Dec; 32(36):9677-84. PubMed ID: 21959005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic Strategies for Modulating the Extracellular Matrix to Improve Pancreatic Islet Function and Survival After Transplantation.
    Smink AM; de Vos P
    Curr Diab Rep; 2018 May; 18(7):39. PubMed ID: 29779190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans.
    Buitinga M; Truckenmüller R; Engelse MA; Moroni L; Ten Hoopen HW; van Blitterswijk CA; de Koning EJ; van Apeldoorn AA; Karperien M
    PLoS One; 2013; 8(5):e64772. PubMed ID: 23737999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of an approved biodegradable polymer scaffold as a solid support system for improvement of islet engraftment.
    Kin T; O'Neil JJ; Pawlick R; Korbutt GS; Shapiro AM; Lakey JR
    Artif Organs; 2008 Dec; 32(12):990-3. PubMed ID: 19133030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracutaneous Transplantation of Islets Within a Biodegradable Temporizing Matrix as an Alternative Site for Islet Transplantation.
    Rojas-Canales D; Walters SN; Penko D; Cultrone D; Bailey J; Chtanova T; Nitschke J; Johnston J; Kireta S; Loudovaris T; Kay TW; Kuchel TR; Hawthorne W; O'Connell PJ; Korbutt G; Greenwood JE; Grey ST; Drogemuller CJ; Coates PT
    Diabetes; 2023 Jun; 72(6):758-768. PubMed ID: 36929171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroporous biohybrid cryogels for co-housing pancreatic islets with mesenchymal stromal cells.
    Borg DJ; Welzel PB; Grimmer M; Friedrichs J; Weigelt M; Wilhelm C; Prewitz M; Stißel A; Hommel A; Kurth T; Freudenberg U; Bonifacio E; Werner C
    Acta Biomater; 2016 Oct; 44():178-87. PubMed ID: 27506126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an ectopic site for islet transplantation, using biodegradable scaffolds.
    Dufour JM; Rajotte RV; Zimmerman M; Rezania A; Kin T; Dixon DE; Korbutt GS
    Tissue Eng; 2005; 11(9-10):1323-31. PubMed ID: 16259588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prevascularized tissue engineering chamber supports growth and function of islets and progenitor cells in diabetic mice.
    Forster NA; Penington AJ; Hardikar AA; Palmer JA; Hussey A; Tai J; Morrison WA; Feeney SJ
    Islets; 2011; 3(5):271-83. PubMed ID: 21847009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel.
    Davis NE; Beenken-Rothkopf LN; Mirsoian A; Kojic N; Kaplan DL; Barron AE; Fontaine MJ
    Biomaterials; 2012 Oct; 33(28):6691-7. PubMed ID: 22766242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microchip-based engineering of super-pancreatic islets supported by adipose-derived stem cells.
    Jun Y; Kang AR; Lee JS; Park SJ; Lee DY; Moon SH; Lee SH
    Biomaterials; 2014 Jun; 35(17):4815-26. PubMed ID: 24636217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.