These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29790560)

  • 1. Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core-shell nanowires.
    Weng WL; Hsu CY; Lee JS; Fan HH; Liao CN
    Nanoscale; 2018 May; 10(21):9862-9866. PubMed ID: 29790560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanthanide-based heteroepitaxial core-shell nanostructures: compressive versus tensile strain asymmetry.
    Johnson NJ; van Veggel FC
    ACS Nano; 2014 Oct; 8(10):10517-27. PubMed ID: 25289882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Rotational Twin Boundaries and Lattice Mismatch on III-V Nanowire Growth.
    Steidl M; Koppka C; Winterfeld L; Peh K; Galiana B; Supplie O; Kleinschmidt P; Runge E; Hannappel T
    ACS Nano; 2017 Sep; 11(9):8679-8689. PubMed ID: 28881138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous Strain Relaxation in Core-Shell Nanowire Heterostructures via Simultaneous Coherent and Incoherent Growth.
    Lewis RB; Nicolai L; Küpers H; Ramsteiner M; Trampert A; Geelhaar L
    Nano Lett; 2017 Jan; 17(1):136-142. PubMed ID: 28001430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures.
    Wang Z; Chen Z; Zhang H; Zhang Z; Wu H; Jin M; Wu C; Yang D; Yin Y
    ACS Nano; 2015 Mar; 9(3):3307-13. PubMed ID: 25744113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics.
    Zhang B; Li W; Jiu J; Yang Y; Jing J; Suganuma K; Li CF
    Inorg Chem; 2019 Mar; 58(5):3374-3381. PubMed ID: 30789711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Misfit dislocation free InAs/GaSb core-shell nanowires grown by molecular beam epitaxy.
    Rieger T; Grützmacher D; Lepsa MI
    Nanoscale; 2015 Jan; 7(1):356-64. PubMed ID: 25406991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony-mediated control of misfit dislocations and strain at the highly lattice mismatched GaSb/GaAs interface.
    Wang Y; Ruterana P; Chen J; Kret S; El Kazzi S; Genevois C; Desplanque L; Wallart X
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9760-4. PubMed ID: 24024581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Layer Deposition and Strain Analysis of Epitaxial GaN-ZnO Core-Shell Nanowires.
    Kolhep M; Pantle F; Karlinger M; Wang D; Scherer T; Kübel C; Stutzmann M; Zacharias M
    Nano Lett; 2023 Aug; 23(15):6920-6926. PubMed ID: 37499227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Seeded MOCVD Growth and Dramatically Enhanced Photoluminescence of InGaAs/InP Core-Shell Nanowires.
    Ji X; Chen X; Yang X; Zhang X; Shao J; Yang T
    Nanoscale Res Lett; 2018 Sep; 13(1):269. PubMed ID: 30187239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nearly lattice matched all wurtzite CdSe/ZnTe type II core-shell nanowires with epitaxial interfaces for photovoltaics.
    Wang K; Rai SC; Marmon J; Chen J; Yao K; Wozny S; Cao B; Yan Y; Zhang Y; Zhou W
    Nanoscale; 2014 Apr; 6(7):3679-85. PubMed ID: 24567192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epitaxial Growth of Lattice-Mismatched Core-Shell TiO2 @MoS2 for Enhanced Lithium-Ion Storage.
    Dai R; Zhang A; Pan Z; Al-Enizi AM; Elzatahry AA; Hu L; Zheng G
    Small; 2016 May; 12(20):2792-9. PubMed ID: 27062267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution transmission electron microscopy studies of metal/ceramics interfaces.
    Ikuhara Y; Pirouz P
    Microsc Res Tech; 1998 Feb; 40(3):206-41. PubMed ID: 9518055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photolysis stability of Cu
    Huang CL; Weng WL; Huang YS; Liao CN
    Nanoscale; 2019 Aug; 11(29):13709-13713. PubMed ID: 31194206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires.
    Liu F; Zhuang X; Wang M; Qi D; Dong S; Yip S; Yin Y; Zhang J; Sa Z; Song K; He L; Tan Y; Meng Y; Ho JC; Liao L; Chen F; Yang ZX
    Nat Commun; 2023 Nov; 14(1):7480. PubMed ID: 37980407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires.
    Rieger T; Zellekens P; Demarina N; Hassan AA; Hackemüller FJ; Lüth H; Pietsch U; Schäpers T; Grützmacher D; Lepsa MI
    Nanoscale; 2017 Nov; 9(46):18392-18401. PubMed ID: 29147699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cracking the Si Shell Growth in Hexagonal GaP-Si Core-Shell Nanowires.
    Conesa-Boj S; Hauge HI; Verheijen MA; Assali S; Li A; Bakkers EP; Fontcuberta i Morral A
    Nano Lett; 2015 May; 15(5):2974-9. PubMed ID: 25922878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating fcc and hcp Ruthenium on the Surface of Palladium-Copper Alloy through Tunable Lattice Mismatch.
    Yao Y; He DS; Lin Y; Feng X; Wang X; Yin P; Hong X; Zhou G; Wu Y; Li Y
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5501-5. PubMed ID: 27010243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM.
    Bhattarai N; Casillas G; Ponce A; Jose-Yacaman M
    Surf Sci; 2013 Mar; 609():161-166. PubMed ID: 23457419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shedding Light on the Role of Misfit Strain in Controlling Core-Shell Nanocrystals.
    Zhao J; Chen B; Wang F
    Adv Mater; 2020 Nov; 32(46):e2004142. PubMed ID: 33051904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.