BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 29790833)

  • 1. Alterations in the cortical control of standing posture during varying levels of postural threat and task difficulty.
    Tokuno CD; Keller M; Carpenter MG; Márquez G; Taube W
    J Neurophysiol; 2018 Sep; 120(3):1010-1016. PubMed ID: 29790833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracortical Inhibition Increases during Postural Task Execution in Response to Balance Training.
    Mouthon A; Taube W
    Neuroscience; 2019 Mar; 401():35-42. PubMed ID: 30660672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enhanced level of motor cortical excitability during the control of human standing.
    Tokuno CD; Taube W; Cresswell AG
    Acta Physiol (Oxf); 2009 Mar; 195(3):385-95. PubMed ID: 18774948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing mediolateral standing sway is associated with increasing corticospinal excitability, and decreasing M1 inhibition and facilitation.
    Nandi T; Fisher BE; Hortobágyi T; Salem GJ
    Gait Posture; 2018 Feb; 60():135-140. PubMed ID: 29202358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of intracortical inhibition in soleus muscle during postural activity.
    Soto O; Valls-Solé J; Shanahan P; Rothwell J
    J Neurophysiol; 2006 Oct; 96(4):1711-7. PubMed ID: 16790603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical contributions to anticipatory postural adjustments in the trunk.
    Chiou SY; Hurry M; Reed T; Quek JX; Strutton PH
    J Physiol; 2018 Apr; 596(7):1295-1306. PubMed ID: 29368403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of intracortical inhibition during physically performed and mentally simulated balance tasks.
    Mouthon A; Ruffieux J; Taube W
    Eur J Appl Physiol; 2021 May; 121(5):1379-1388. PubMed ID: 33606094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracortical inhibition in the soleus muscle is reduced during the control of upright standing in both young and old adults.
    Papegaaij S; Baudry S; Négyesi J; Taube W; Hortobágyi T
    Eur J Appl Physiol; 2016 May; 116(5):959-67. PubMed ID: 27002819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks.
    Mouthon A; Ruffieux J; Wälchli M; Keller M; Taube W
    Neuroscience; 2015 Sep; 303():535-43. PubMed ID: 26192097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in motor cortical control of the soleus and tibialis anterior.
    Lauber B; Gollhofer A; Taube W
    J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30194250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postural challenge affects motor cortical activity in young and old adults.
    Papegaaij S; Taube W; van Keeken HG; Otten E; Baudry S; Hortobágyi T
    Exp Gerontol; 2016 Jan; 73():78-85. PubMed ID: 26615878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greater task difficulty during unilateral motor tasks changes intracortical inhibition and facilitation in the ipsilateral primary motor cortex in young men.
    Watanabe H; Ogoh S; Miyamoto N; Kanehisa H; Yoshitake Y
    Neurosci Lett; 2023 Jun; 808():137293. PubMed ID: 37169163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical involvement in anticipatory postural reactions in man.
    Petersen TH; Rosenberg K; Petersen NC; Nielsen JB
    Exp Brain Res; 2009 Feb; 193(2):161-71. PubMed ID: 18956177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast increase of motor cortical inhibition following postural changes in healthy subjects.
    Oliveri M; Caltagirone C; Loriga R; Pompa MN; Versace V; Souchard P
    Neurosci Lett; 2012 Nov; 530(1):7-11. PubMed ID: 23022506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of posture and coactivation on corticomotor excitability of ankle muscles.
    Kesar TM; Eicholtz S; Lin BJ; Wolf SL; Borich MR
    Restor Neurol Neurosci; 2018; 36(1):131-146. PubMed ID: 29439363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitability changes in intracortical neural circuits induced by differentially controlled walking patterns.
    Ito T; Tsubahara A; Shinkoda K; Yoshimura Y; Kobara K; Osaka H
    PLoS One; 2015; 10(2):e0117931. PubMed ID: 25688972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced excitability of the corticospinal pathway of the ankle extensor and flexor muscles during standing in humans.
    Obata H; Sekiguchi H; Nakazawa K; Ohtsuki T
    Exp Brain Res; 2009 Aug; 197(3):207-13. PubMed ID: 19603153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.