BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29790961)

  • 1. Increased vulnerability to attentional failure during acute sleep deprivation in women depends on menstrual phase.
    Vidafar P; Gooley JJ; Burns AC; Rajaratnam SMW; Rueger M; Van Reen E; Czeisler CA; Lockley SW; Cain SW
    Sleep; 2018 Aug; 41(8):. PubMed ID: 29790961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness.
    Short MA; Centofanti S; Hilditch C; Banks S; Lushington K; Dorrian J
    Appl Ergon; 2016 May; 54():72-82. PubMed ID: 26851466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of menstrual cycle phase and oral contraceptives on alertness, cognitive performance, and circadian rhythms during sleep deprivation.
    Wright KP; Badia P
    Behav Brain Res; 1999 Sep; 103(2):185-94. PubMed ID: 10513586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian variation of sleep during the follicular and luteal phases of the menstrual cycle.
    Shechter A; Varin F; Boivin DB
    Sleep; 2010 May; 33(5):647-56. PubMed ID: 20469807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute versus chronic partial sleep deprivation in middle-aged people: differential effect on performance and sleepiness.
    Philip P; Sagaspe P; Prague M; Tassi P; Capelli A; Bioulac B; Commenges D; Taillard J
    Sleep; 2012 Jul; 35(7):997-1002. PubMed ID: 22754046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss.
    Bermudez EB; Klerman EB; Czeisler CA; Cohen DA; Wyatt JK; Phillips AJ
    PLoS One; 2016; 11(3):e0151770. PubMed ID: 27019198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classifying attentional vulnerability to total sleep deprivation using baseline features of Psychomotor Vigilance Test performance.
    Chua EC; Sullivan JP; Duffy JF; Klerman EB; Lockley SW; Kristal BS; Czeisler CA; Gooley JJ
    Sci Rep; 2019 Aug; 9(1):12102. PubMed ID: 31431644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiorespiratory responses to submaximal incremental exercise are not affected by one night's sleep deprivation during the follicular and luteal phases of the menstrual cycle.
    Kaygisiz Z; Erkasap N; Soydan M
    Indian J Physiol Pharmacol; 2003 Jul; 47(3):279-87. PubMed ID: 14723313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of acute and chronic sleep deprivation on daytime alertness and cognitive performance of healthy snorers and non-snorers.
    Tassi P; Schimchowitsch S; Rohmer O; Elbaz M; Bonnefond A; Sagaspe P; Taillard J; Léger D; Philip P
    Sleep Med; 2012 Jan; 13(1):29-35. PubMed ID: 22177345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decreased salivary alpha-amylase levels are associated with performance deficits during sleep loss.
    Pajcin M; Banks S; White JM; Dorrian J; Paech GM; Grant C; Johnson K; Tooley K; Fidock J; Kamimori GH; Della Vedova CB
    Psychoneuroendocrinology; 2017 Apr; 78():131-141. PubMed ID: 28196342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-awakening improves alertness in the morning and during the day after partial sleep deprivation.
    Ikeda H; Kubo T; Kuriyama K; Takahashi M
    J Sleep Res; 2014 Dec; 23(6):673-680. PubMed ID: 25130898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benefits of Sleep Extension on Sustained Attention and Sleep Pressure Before and During Total Sleep Deprivation and Recovery.
    Arnal PJ; Sauvet F; Leger D; van Beers P; Bayon V; Bougard C; Rabat A; Millet GY; Chennaoui M
    Sleep; 2015 Dec; 38(12):1935-43. PubMed ID: 26194565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of menstrual cycle phase on endocrine effects of partial sleep restriction in healthy women.
    LeRoux A; Wright L; Perrot T; Rusak B
    Psychoneuroendocrinology; 2014 Nov; 49():34-46. PubMed ID: 25051527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Socializing by Day May Affect Performance by Night: Vulnerability to Sleep Deprivation is Differentially Mediated by Social Exposure in Extraverts vs Introverts.
    Rupp TL; Killgore WD; Balkin TJ
    Sleep; 2010 Nov; 33(11):1475-85. PubMed ID: 21102989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited Efficacy of Caffeine and Recovery Costs During and Following 5 Days of Chronic Sleep Restriction.
    Doty TJ; So CJ; Bergman EM; Trach SK; Ratcliffe RH; Yarnell AM; Capaldi VF; Moon JE; Balkin TJ; Quartana PJ
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustained attention performance during sleep deprivation: evidence of state instability.
    Doran SM; Van Dongen HP; Dinges DF
    Arch Ital Biol; 2001 Apr; 139(3):253-67. PubMed ID: 11330205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.
    Deurveilher S; Bush JE; Rusak B; Eskes GA; Semba K
    Sleep; 2015 Apr; 38(4):515-28. PubMed ID: 25515100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.