These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 29791201)

  • 1. Performance of an Additional Task During Level 2 Automated Driving: An On-Road Study Comparing Drivers With and Without Experience With Partial Automation.
    Solís-Marcos I; Ahlström C; Kircher K
    Hum Factors; 2018 Sep; 60(6):778-792. PubMed ID: 29791201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Partial Automation on Driver Attention: A Naturalistic Driving Study.
    Gaspar J; Carney C
    Hum Factors; 2019 Dec; 61(8):1261-1276. PubMed ID: 30920852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly automated driving, secondary task performance, and driver state.
    Merat N; Jamson AH; Lai FC; Carsten O
    Hum Factors; 2012 Oct; 54(5):762-71. PubMed ID: 23156621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Were they in the loop during automated driving? Links between visual attention and crash potential.
    Louw T; Madigan R; Carsten O; Merat N
    Inj Prev; 2017 Aug; 23(4):281-286. PubMed ID: 27655754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction matters: Manipulating trust in automation and reliance in automated driving.
    Körber M; Baseler E; Bengler K
    Appl Ergon; 2018 Jan; 66():18-31. PubMed ID: 28958427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vigilance Decrement During On-Road Partially Automated Driving Across Four Systems.
    Biondi FN; McDonnell AS; Mahmoodzadeh M; Jajo N; Balakumar Balasingam ; Strayer DL
    Hum Factors; 2024 Sep; 66(9):2179-2190. PubMed ID: 37496464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticipatory Driving in Automated Vehicles: The Effects of Driving Experience and Distraction.
    He D; DeGuzman CA; Donmez B
    Hum Factors; 2023 Jun; 65(4):663. PubMed ID: 34348496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driver Vigilance in Automated Vehicles: Effects of Demands on Hazard Detection Performance.
    Greenlee ET; DeLucia PR; Newton DC
    Hum Factors; 2019 May; 61(3):474-487. PubMed ID: 30307760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Who is performing the driving tasks after interventions? Investigating drivers' understanding of mode transition logic in automated vehicles.
    Kim S; Novakazi F; van Grondelle E; van Egmond R; Happee R
    Appl Ergon; 2024 Nov; 121():104369. PubMed ID: 39182395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.
    Wandtner B; Schömig N; Schmidt G
    Hum Factors; 2018 Sep; 60(6):870-881. PubMed ID: 29617161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control task substitution in semiautomated driving: does it matter what aspects are automated?
    Carsten O; Lai FC; Barnard Y; Jamson AH; Merat N
    Hum Factors; 2012 Oct; 54(5):747-61. PubMed ID: 23156620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driving Performance After Self-Regulated Control Transitions in Highly Automated Vehicles.
    Eriksson A; Stanton NA
    Hum Factors; 2017 Dec; 59(8):1233-1248. PubMed ID: 28902526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceived safety and trust in SAE Level 2 partially automated cars: Results from an online questionnaire.
    Nordhoff S; Stapel J; He X; Gentner A; Happee R
    PLoS One; 2021; 16(12):e0260953. PubMed ID: 34932565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driver Vigilance in Automated Vehicles: Hazard Detection Failures Are a Matter of Time.
    Greenlee ET; DeLucia PR; Newton DC
    Hum Factors; 2018 Jun; 60(4):465-476. PubMed ID: 29513611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of self-regulation in the context of driver distraction: A simulator study.
    Wandtner B; Schumacher M; Schmidt EA
    Traffic Inj Prev; 2016 Jul; 17(5):472-9. PubMed ID: 27082493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post Take-Over Performance Varies in Drivers of Automated and Connected Vehicle Technology in Near-Miss Scenarios.
    Yamani Y; Glassman J; Alruwaili A; Yahoodik SE; Davis E; Lugo S; Xie K; Ishak S
    Hum Factors; 2024 Nov; 66(11):2503-2517. PubMed ID: 38052019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Attention Allocation during Short Periods of Partially Automated Driving: An Event-Related Potentials Study.
    Solís-Marcos I; Galvao-Carmona A; Kircher K
    Front Hum Neurosci; 2017; 11():537. PubMed ID: 29163112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing drivers' visual attention at Junctions in Real and Simulated Environments.
    Robbins CJ; Allen HA; Chapman P
    Appl Ergon; 2019 Oct; 80():89-101. PubMed ID: 31280814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.