These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29791245)

  • 1. PI(3,5)P
    Wilson ZN; Scott AL; Dowell RD; Odorizzi G
    Mol Biol Cell; 2018 Jul; 29(13):1718-1731. PubMed ID: 29791245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance.
    Banerjee S; Clapp K; Tarsio M; Kane PM
    J Biol Chem; 2019 Jun; 294(23):9161-9171. PubMed ID: 31023825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fab1/PIKfyve phosphoinositide phosphate kinase is not necessary to maintain the pH of lysosomes and of the yeast vacuole.
    Ho CY; Choy CH; Wattson CA; Johnson DE; Botelho RJ
    J Biol Chem; 2015 Apr; 290(15):9919-28. PubMed ID: 25713145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interdependent transport of yeast vacuole Ca
    Zhang C; Feng Y; Balutowski A; Miner GE; Rivera-Kohr DA; Hrabak MR; Sullivan KD; Guo A; Calderin JD; Fratti RA
    J Biol Chem; 2022 Dec; 298(12):102672. PubMed ID: 36334632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4.
    Wilson ZN; Buysse D; West M; Ahrens D; Odorizzi G
    J Cell Sci; 2021 Aug; 134(15):. PubMed ID: 34342352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidylinositol 3,5-bisphosphate regulates the transition between trans-SNARE complex formation and vacuole membrane fusion.
    Miner GE; Sullivan KD; Guo A; Jones BC; Hurst LR; Ellis EC; Starr ML; Fratti RA
    Mol Biol Cell; 2019 Jan; 30(2):201-208. PubMed ID: 30427760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H
    Carpaneto A; Boccaccio A; Lagostena L; Di Zanni E; Scholz-Starke J
    EMBO Rep; 2017 Jul; 18(7):1100-1107. PubMed ID: 28536248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct interaction of the Golgi V-ATPase a-subunit isoform with PI(4)P drives localization of Golgi V-ATPases in yeast.
    Banerjee S; Kane PM
    Mol Biol Cell; 2017 Sep; 28(19):2518-2530. PubMed ID: 28720663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylinositol 3,5-bisphosphate regulates Ca
    Miner GE; Sullivan KD; Zhang C; Rivera-Kohr D; Guo A; Hurst LR; Ellis EC; Starr ML; Jones BC; Fratti RA
    Traffic; 2020 Jul; 21(7):503-517. PubMed ID: 32388897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The signaling lipid PI(3,5)P₂ stabilizes V₁-V(o) sector interactions and activates the V-ATPase.
    Li SC; Diakov TT; Xu T; Tarsio M; Zhu W; Couoh-Cardel S; Weisman LS; Kane PM
    Mol Biol Cell; 2014 Apr; 25(8):1251-62. PubMed ID: 24523285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of vacuole membrane homeostasis by a resident PI-3,5-kinase inhibitor.
    Malia PC; Numrich J; Nishimura T; González Montoro A; Stefan CJ; Ungermann C
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4684-4689. PubMed ID: 29674454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. V-ATPase, ScNhx1p and yeast vacuole fusion.
    Qiu QS
    J Genet Genomics; 2012 Apr; 39(4):167-71. PubMed ID: 22546538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbation of the Vacuolar ATPase: A NOVEL CONSEQUENCE OF INOSITOL DEPLETION.
    Deranieh RM; Shi Y; Tarsio M; Chen Y; McCaffery JM; Kane PM; Greenberg ML
    J Biol Chem; 2015 Nov; 290(46):27460-72. PubMed ID: 26324718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Big1 is a newly identified autophagy regulator that is critical for a fully functional V-ATPase.
    Lei Y; Yang Y; Zhang Z; Zhang R; Song X; Malek SN; Tang D; Klionsky DJ
    Mol Biol Cell; 2024 Nov; 35(11):br20. PubMed ID: 39259764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monovalent cation transporters at the plasma membrane in yeasts.
    Ariño J; Ramos J; Sychrova H
    Yeast; 2019 Apr; 36(4):177-193. PubMed ID: 30193006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Nuclear Exclusion of Hcm1 in Aging
    Ghavidel A; Baxi K; Prusinkiewicz M; Swan C; Belak ZR; Eskiw CH; Carvalho CE; Harkness TA
    G3 (Bethesda); 2018 May; 8(5):1579-1592. PubMed ID: 29519938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organelle acidification is important for localisation of vacuolar proteins in Saccharomyces cerevisiae.
    Matsumoto R; Suzuki K; Ohya Y
    Protoplasma; 2013 Dec; 250(6):1283-93. PubMed ID: 23708375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo characterization of modulation of the vacuolar cation channel TRPY1 from Saccharomyces cerevisiae.
    Hamamoto S; Mori Y; Yabe I; Uozumi N
    FEBS J; 2018 Mar; 285(6):1146-1161. PubMed ID: 29405580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae.
    Cooke FT; Dove SK; McEwen RK; Painter G; Holmes AB; Hall MN; Michell RH; Parker PJ
    Curr Biol; 1998 Nov; 8(22):1219-22. PubMed ID: 9811604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
    MacDiarmid CW; Milanick MA; Eide DJ
    J Biol Chem; 2002 Oct; 277(42):39187-94. PubMed ID: 12161436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.