These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29791262)

  • 1. Flow Recirculation in Cartilaginous Ring Cavities of Human Trachea Model.
    Montoya Segnini J; Bocanegra Evans H; Castillo L
    J Aerosol Med Pulm Drug Deliv; 2018 May; ():. PubMed ID: 29791262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Index-matched measurements of the effect of cartilaginous rings on tracheobronchial flow.
    Bocanegra Evans H; Castillo L
    J Biomech; 2016 Jun; 49(9):1601-1606. PubMed ID: 27131850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of cartilaginous rings in tracheal flow with stenosis.
    Bocanegra Evans H; Segnini JM; Doosttalab A; Cordero J; Castillo L
    BMC Biomed Eng; 2023 Jun; 5(1):5. PubMed ID: 37259126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studying airflow structures in periodic cylindrical hills of human tracheal cartilaginous rings.
    Heidarinejad G; Roozbahani MH; Heidarinejad M
    Respir Physiol Neurobiol; 2019 Aug; 266():103-114. PubMed ID: 31028849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cartilage rings on airflow and particle deposition in the trachea and main bronchi.
    Russo J; Robinson R; Oldham MJ
    Med Eng Phys; 2008 Jun; 30(5):581-9. PubMed ID: 17719260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on cartilaginous and muscular strains of rat trachea.
    Teng Z; Liu Z; Lin Y; Wang Y; Li F; Gong K
    Sci China C Life Sci; 2004 Dec; 47(6):485-93. PubMed ID: 15620104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle deposition in a CT-scanned human lung airway.
    Luo HY; Liu Y
    J Biomech; 2009 Aug; 42(12):1869-76. PubMed ID: 19493531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry.
    Oakes JM; Day S; Weinstein SJ; Robinson RJ
    J Biomech Eng; 2010 Feb; 132(2):021008. PubMed ID: 20370245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsteady-state airflow and particle deposition in a three-generation human lung geometry.
    Nazridoust K; Asgharian B
    Inhal Toxicol; 2008 Apr; 20(6):595-610. PubMed ID: 18444012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.
    Kim JW; Phuong NL; Aramaki SI; Ito K
    Respir Physiol Neurobiol; 2018 May; 251():16-27. PubMed ID: 29438809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glottis motion effects on the particle transport and deposition in a subject-specific mouth-to-trachea model: A CFPD study.
    Zhao J; Feng Y; Fromen CA
    Comput Biol Med; 2020 Jan; 116():103532. PubMed ID: 31751812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.
    Isaacs KK; Schlesinger RB; Martonen TB
    J Aerosol Med; 2006; 19(3):344-52. PubMed ID: 17034309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transient breathing cycle on the deposition of micro and nanoparticles on respiratory walls.
    Kuga K; Kizuka R; Khoa ND; Ito K
    Comput Methods Programs Biomed; 2023 Jun; 236():107501. PubMed ID: 37163889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Simulation research on the movement and deposition of inhalational particles in the human respiratory tract].
    Yin JJ; Ning Z; Fu J; Lu XZ
    Huan Jing Ke Xue; 2010 Jul; 31(7):1476-82. PubMed ID: 20825013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs.
    Nowak N; Kakade PP; Annapragada AV
    Ann Biomed Eng; 2003 Apr; 31(4):374-90. PubMed ID: 12723679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).
    Berg EJ; Weisman JL; Oldham MJ; Robinson RJ
    J Biomech; 2010 Apr; 43(6):1039-47. PubMed ID: 20116064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics simulation of airflow in the trachea and main bronchi for the subjects with left pulmonary artery sling.
    Qi S; Li Z; Yue Y; van Triest HJ; Kang Y
    Biomed Eng Online; 2014 Jun; 13():85. PubMed ID: 24957947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation.
    Cui X; Wu W; Gutheil E
    Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.