These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 29791374)

  • 1. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goos-Hänchen shifts due to spin-orbit coupling in the carbon nanotube quantum dot nanostructures.
    Asadpour SH
    Appl Opt; 2017 Mar; 56(8):2201-2208. PubMed ID: 28375303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Goos-Hänchen shifts due to the surface plasmon effect in a hybrid system.
    Solookinejad G; Jabbari M; Nafar M; Ahmadi E; Asadpour SH
    Appl Opt; 2018 Oct; 57(28):8193-8198. PubMed ID: 30461769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Goos-Hänchen-like shift of three-level matter wave incident on Raman beams.
    Duan Z; Hu L; Xu X; Liu C
    Opt Express; 2014 Jul; 22(15):17679-90. PubMed ID: 25089388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunneling-induced giant Goos-Hänchen shift in quantum wells.
    Yang WX; Liu S; Zhu Z; Ziauddin ; Lee RK
    Opt Lett; 2015 Jul; 40(13):3133-6. PubMed ID: 26125385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the Goos-Hänchen shifts of a probe light beam using phase tunability of the intracavity medium.
    Radmehr A; Sahrai M; Sattari H
    Appl Opt; 2016 Mar; 55(8):1946-52. PubMed ID: 26974787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant and tunable Goos-Hänchen shift with a high reflectance induced by PT-symmetry in atomic vapor.
    Han P; Li W; Zhou Y; Jiang S; Chang X; Huang A; Zhang H; Xiao Z
    Opt Express; 2021 Sep; 29(19):30436-30448. PubMed ID: 34614773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave.
    Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J
    Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Goos-Hänchen shift in two different enantiomers' chiral molecules via quantum coherence.
    Nasehi R; Mahmoudi M
    Appl Opt; 2018 Sep; 57(27):7714-7721. PubMed ID: 30462033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite Goos-Hänchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials.
    Hu X; Huang Y; Zhang W; Qing DK; Peng J
    Opt Lett; 2005 Apr; 30(8):899-901. PubMed ID: 15865392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction.
    Bai Z; Huang G
    Opt Express; 2016 Mar; 24(5):4442-4461. PubMed ID: 29092273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance.
    Yang R; Zhu W; Li J
    Opt Express; 2014 Jan; 22(2):2043-50. PubMed ID: 24515213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable and enhanced Goos-Hänchen shift via surface plasmon resonance assisted by a coherent medium.
    Wan RG; Zubairy MS
    Opt Express; 2020 Mar; 28(5):6036-6047. PubMed ID: 32225861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Goos-Hänchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab.
    Pichugin KN; Maksimov DN; Sadreev AF
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1324-1329. PubMed ID: 30110294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Goos-Hänchen and Imbert-Fedorov shifts of rotational 2-D finite energy Airy beams.
    Gao M; Deng D
    Opt Express; 2020 Mar; 28(7):10531-10541. PubMed ID: 32225636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goos-Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites.
    Huang Y; Zhao B; Gao L
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1436-44. PubMed ID: 22751412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic control of Goos-Hänchen shifts in a yttrium-iron-garnet film.
    Yu W; Sun H; Gao L
    Sci Rep; 2017 Mar; 7():45866. PubMed ID: 28361936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Goos-Hänchen shifts at the interfaces between left- and right-handed media.
    Qing DK; Chen G
    Opt Lett; 2004 Apr; 29(8):872-4. PubMed ID: 15119406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified total internal reflection.
    Fan J; Dogariu A; Wang LJ
    Opt Express; 2003 Feb; 11(4):299-308. PubMed ID: 19461736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.