These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29791406)

  • 1. Controllable long focal length microlens based on thermal expansion.
    Hu Y; Xiong Y; Chen X; Bai H; Tian Y; Liu G
    Appl Opt; 2018 May; 57(15):4277-4282. PubMed ID: 29791406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralong focal length microlens array fabricated based on SU-8 photoresist.
    Bian R; Xiong Y; Chen X; Xiong P; Hou S; Chen S; Zhang X; Liu G; Tian Y
    Appl Opt; 2015 Jun; 54(16):5088-93. PubMed ID: 26192669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of high fill factor cylindrical microlens array with isolated thermal reflow.
    Qiu J; Li M; Ye H; Yang C; Shi C
    Appl Opt; 2018 Sep; 57(25):7296-7302. PubMed ID: 30182991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabrication of Microlens by Timed-Development-and-Thermal-Reflow (TDTR) Process for Projection Lithography.
    Tan JY; Goh G; Kim J
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32156007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method.
    Chang SI; Yoon JB
    Opt Express; 2004 Dec; 12(25):6366-71. PubMed ID: 19488283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations.
    Ye JS; Dong BZ; Gu BY; Liu ST
    Appl Opt; 2004 Sep; 43(27):5183-92. PubMed ID: 15473238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials.
    Ji HS; Kim JH; Kumar S
    Opt Lett; 2003 Jul; 28(13):1147-9. PubMed ID: 12879936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic-inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties.
    Jacot-Descombes L; Cadarso VJ; Schleunitz A; Grützner S; Klein JJ; Brugger J; Schift H; Grützner G
    Opt Express; 2015 Sep; 23(19):25365-76. PubMed ID: 26406732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method.
    Kuo SM; Lin CH
    Opt Express; 2010 Aug; 18(18):19114-9. PubMed ID: 20940806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric-elastomer-based fabrication method for varifocal microlens array.
    Wang L; Hayakawa T; Ishikawa M
    Opt Express; 2017 Dec; 25(25):31708-31717. PubMed ID: 29245842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses.
    Meunier T; Villafranca AB; Bhardwaj R; Weck A
    Opt Lett; 2012 Oct; 37(20):4266-8. PubMed ID: 23073432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.
    Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-area fabrication of microlens arrays by using self-pinning effects during the thermal reflow process.
    Heo SG; Jang D; Koo HJ; Yoon H
    Opt Express; 2019 Feb; 27(3):3439-3447. PubMed ID: 30732364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls.
    Long Y; Song Z; Pan M; Tao C; Hong R; Dai B; Zhang D
    Opt Express; 2021 Apr; 29(8):12763-12771. PubMed ID: 33985026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a dual-focus artificial compound eye with improved imaging based on modified microprinting and air-assisted deformation.
    Li J; Wang W; Fu Z; Zhu R; Huang Y
    Appl Opt; 2023 Apr; 62(10):D125-D130. PubMed ID: 37132777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrusion printing for fabrication of spherical and cylindrical microlens arrays.
    Xing J; Rong W; Sun D; Wang L; Sun L
    Appl Opt; 2016 Sep; 55(25):6947-52. PubMed ID: 27607269
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Zhong Y; Yu H; Zhou P; Wen Y; Zhao W; Zou W; Luo H; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39550-39560. PubMed ID: 34378373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Yang S; Peng K; Cao X; Wang W; Chen Y; Li Y; Zhao J; Li B
    Appl Opt; 2020 Feb; 59(4):1099-1104. PubMed ID: 32225248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a Microlens Array with Controlled Curvature by Thermally Curving Photosensitive Gel Film beneath Microholes.
    Zhang D; Xu Q; Fang C; Wang K; Wang X; Zhuang S; Dai B
    ACS Appl Mater Interfaces; 2017 May; 9(19):16604-16609. PubMed ID: 28452461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.