These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29791808)

  • 1. Pseudomonads contribute to regulation of Pratylenchus penetrans (Nematoda) populations on apple.
    Watson TT; Forge TA; Nelson LM
    Can J Microbiol; 2018 Nov; 64(11):775-785. PubMed ID: 29791808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Source-Dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans.
    Hewavitharana SS; Mazzola M
    Phytopathology; 2016 Sep; 106(9):1015-28. PubMed ID: 27143411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Brassicaceae Seed Meal Soil Amendment and Apple Rootstock Genotype on Microbiome Structure and Replant Disease Suppression.
    Wang L; Mazzola M
    Phytopathology; 2019 Apr; 109(4):607-614. PubMed ID: 30265201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of Pseudomonas fluorescens for control of Mucor rot of apple during commercial storage and potential modes of action.
    Wallace RL; Hirkala DL; Nelson LM
    Can J Microbiol; 2018 Jun; 64(6):420-431. PubMed ID: 29505734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives.
    Siddiqui IA; Shaukat SS
    J Appl Microbiol; 2005; 98(1):43-55. PubMed ID: 15610416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials.
    Mazzola M; Gu YH
    Phytopathology; 2000 Feb; 90(2):114-9. PubMed ID: 18944598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultural management of microbial community structure to enhance growth of apple in replant soils.
    Mazzola M; Granatstein DM; Elfving DC; Mullinix K; Gu YH
    Phytopathology; 2002 Dec; 92(12):1363-6. PubMed ID: 18943894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation.
    Mazzola M; Hewavitharana SS; Strauss SL
    Phytopathology; 2015 Apr; 105(4):460-9. PubMed ID: 25412009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Root-Lesion Nematode,
    King L; Munro P; Xu H; Jones M; Forge T
    Plant Dis; 2024 Jul; 108(7):1993-1999. PubMed ID: 38213117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens.
    Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y
    Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Brassicaceous Seed Meal and Apple Rootstock on Recovery of Pythium spp. and Pratylenchus penetrans from Roots Grown in Replant Soils.
    Mazzola M; Brown J; Zhao X; Izzo AD; Fazio G
    Plant Dis; 2009 Jan; 93(1):51-57. PubMed ID: 30764268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field Evaluation of Reduced Rate Brassicaceae Seed Meal Amendment and Rootstock Genotype on the Microbiome and Control of Apple Replant Disease.
    Wang L; Mazzola M
    Phytopathology; 2019 Aug; 109(8):1378-1391. PubMed ID: 30887889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological control of apple blue mold with Pseudomonas fluorescens.
    Etebarian HR; Sholberg PL; Eastwell KC; Sayler RJ
    Can J Microbiol; 2005 Jul; 51(7):591-8. PubMed ID: 16175208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.
    Khabbaz SE; Abbasi PA
    Can J Microbiol; 2014 Jan; 60(1):25-33. PubMed ID: 24392923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhizosphere competent inoculants modulate the apple root-associated microbiome and plant phytoalexins.
    Hauschild K; Orth N; Liu B; Giongo A; Gschwendtner S; Beerhues L; Schloter M; Vetterlein D; Winkelmann T; Smalla K
    Appl Microbiol Biotechnol; 2024 May; 108(1):344. PubMed ID: 38801472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations.
    Mazzola M; Zhao X; Cohen MF; Raaijmakers JM
    Phytopathology; 2007 Oct; 97(10):1348-55. PubMed ID: 18943694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocontrol of Phytophthora cactorum the causal agent of root and crown rot on apple (Malus domestica) by formulated Pseudomonas fluorescens.
    Farzaneh M; Sharifi-Tehrani A; Ahmadzadeh M; Zad J
    Commun Agric Appl Biol Sci; 2007; 72(4):891-900. PubMed ID: 18396826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Arbuscular Mycorrhizal Fungi on
    Ceustermans A; Van Hemelrijck W; Van Campenhout J; Bylemans D
    Pathogens; 2018 Sep; 7(4):. PubMed ID: 30241406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of the microbial complex having a causal role in the development of apple replant disease in washington.
    Mazzola M
    Phytopathology; 1998 Sep; 88(9):930-8. PubMed ID: 18944871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots.
    Weller DM; Landa BB; Mavrodi OV; Schroeder KL; De La Fuente L; Blouin Bankhead S; Allende Molar R; Bonsall RF; Mavrodi DV; Thomashow LS
    Plant Biol (Stuttg); 2007 Jan; 9(1):4-20. PubMed ID: 17058178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.