These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 29792177)
1. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis. Xu L; Wu YH; Zhou P; Cheng H; Liu Q; Xu XW BMC Genomics; 2018 May; 19(1):385. PubMed ID: 29792177 [TBL] [Abstract][Full Text] [Related]
2. Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Rainey FA; Silva J; Nobre MF; Silva MT; da Costa MS Int J Syst Evol Microbiol; 2003 Jan; 53(Pt 1):35-41. PubMed ID: 12656149 [TBL] [Abstract][Full Text] [Related]
3. Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Hanada S; Kawase Y; Hiraishi A; Takaichi S; Matsuura K; Shimada K; Nagashima KV Int J Syst Bacteriol; 1997 Apr; 47(2):408-13. PubMed ID: 9103629 [TBL] [Abstract][Full Text] [Related]
4. Genomic-based taxonomic classification of the family Xu L; Sun C; Fang C; Oren A; Xu XW Int J Syst Evol Microbiol; 2020 Aug; 70(8):4470-4495. PubMed ID: 32726199 [TBL] [Abstract][Full Text] [Related]
5. Genome sequence, metabolic properties and cyanobacterial attachment of Porphyrobacter sp. HT-58-2 isolated from a filamentous cyanobacterium-microbial consortium. Hughes RA; Jin X; Zhang Y; Zhang R; Tran S; Williams PG; Lindsey JS; Miller ES Microbiology (Reading); 2018 Oct; 164(10):1229-1239. PubMed ID: 30117798 [TBL] [Abstract][Full Text] [Related]
6. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. Gan HM; Hudson AO; Rahman AY; Chan KG; Savka MA BMC Genomics; 2013 Jun; 14():431. PubMed ID: 23809012 [TBL] [Abstract][Full Text] [Related]
7. Porphyrobacter meromictius sp. nov., an appendaged bacterium, that produces Bacteriochlorophyll a. Rathgeber C; Yurkova N; Stackebrandt E; Schumann P; Humphrey E; Beatty JT; Yurkov V Curr Microbiol; 2007 Oct; 55(4):356-61. PubMed ID: 17882507 [TBL] [Abstract][Full Text] [Related]
8. Complete genome sequence of bacteriochlorophyll-synthesizing bacterium Liu Q; Wu YH; Cheng H; Xu L; Wang CS; Xu XW Stand Genomic Sci; 2017; 12():32. PubMed ID: 28496940 [TBL] [Abstract][Full Text] [Related]
9. Croceicoccus marinus gen. nov., sp. nov., a yellow-pigmented bacterium from deep-sea sediment, and emended description of the family Erythrobacteraceae. Xu XW; Wu YH; Wang CS; Wang XG; Oren A; Wu M Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2247-53. PubMed ID: 19620383 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. Yang J; Yang S BMC Genomics; 2017 Jan; 18(Suppl 1):940. PubMed ID: 28198668 [TBL] [Abstract][Full Text] [Related]
11. Tepidamorphus gemmatus gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Albuquerque L; Rainey FA; Pena A; Tiago I; VerĂssimo A; Nobre MF; da Costa MS Syst Appl Microbiol; 2010 Mar; 33(2):60-6. PubMed ID: 20116192 [TBL] [Abstract][Full Text] [Related]
12. Altererythrobacter marinus sp. nov., isolated from deep seawater. Lai Q; Yuan J; Shao Z Int J Syst Evol Microbiol; 2009 Dec; 59(Pt 12):2973-6. PubMed ID: 19628597 [TBL] [Abstract][Full Text] [Related]
13. Albimonas donghaensis gen. nov., sp. nov., a non-photosynthetic member of the class Alphaproteobacteria isolated from seawater. Lim JM; Jeon CO; Jang HH; Park DJ; Shin YK; Yeo SH; Kim CJ Int J Syst Evol Microbiol; 2008 Jan; 58(Pt 1):282-5. PubMed ID: 18175722 [TBL] [Abstract][Full Text] [Related]
14. Altererythrobacter aurantiacus sp. nov., isolated from deep-sea sediment. Zhang G; Yang Y; Wang L Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1245-51. PubMed ID: 27371378 [TBL] [Abstract][Full Text] [Related]
15. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus. McDonald JH Mol Biol Evol; 2001 May; 18(5):741-9. PubMed ID: 11319258 [TBL] [Abstract][Full Text] [Related]
16. Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Miroshnichenko ML; Kublanov IV; Kostrikina NA; Tourova TP; Kolganova TV; Birkeland NK; Bonch-Osmolovskaya EA Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1492-6. PubMed ID: 18523201 [TBL] [Abstract][Full Text] [Related]
18. Using a strategy based on the concept of convergent evolution to identify residue substitutions responsible for thermal adaptation. Lin YS Proteins; 2008 Oct; 73(1):53-62. PubMed ID: 18384082 [TBL] [Abstract][Full Text] [Related]
19. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Takami H; Takaki Y; Chee GJ; Nishi S; Shimamura S; Suzuki H; Matsui S; Uchiyama I Nucleic Acids Res; 2004; 32(21):6292-303. PubMed ID: 15576355 [TBL] [Abstract][Full Text] [Related]
20. Amino acid coupling patterns in thermophilic proteins. Liang HK; Huang CM; Ko MT; Hwang JK Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]