These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 29792412)
1. Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions. Li W; Yang KR; Yao X; He Y; Dong Q; Brudvig GW; Batista VS; Wang D ACS Appl Mater Interfaces; 2019 Feb; 11(6):5616-5622. PubMed ID: 29792412 [TBL] [Abstract][Full Text] [Related]
2. Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties. Thorne JE; Li S; Du C; Qin G; Wang D J Phys Chem Lett; 2015 Oct; 6(20):4083-8. PubMed ID: 26722780 [TBL] [Abstract][Full Text] [Related]
3. Foreign In Bu X; Wang G; Tian Y Nanoscale; 2017 Nov; 9(44):17513-17523. PubMed ID: 29109997 [TBL] [Abstract][Full Text] [Related]
4. Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode. Zhang K; Dong T; Xie G; Guan L; Guo B; Xiang Q; Dai Y; Tian L; Batool A; Jan SU; Boddula R; Thebo AA; Gong JR ACS Appl Mater Interfaces; 2017 Dec; 9(49):42723-42733. PubMed ID: 29193959 [TBL] [Abstract][Full Text] [Related]
5. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes. Gurudayal ; Peter LM; Wong LH; Abdi FF ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays. Wang J; Feng B; Su J; Guo L ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404 [TBL] [Abstract][Full Text] [Related]
7. Surface Modification of Hematite Photoanodes with CeO Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429 [TBL] [Abstract][Full Text] [Related]
8. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
9. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. Ma Y; Shinde PS; Li X; Pan S ACS Omega; 2019 Oct; 4(17):17257-17268. PubMed ID: 31656900 [TBL] [Abstract][Full Text] [Related]
10. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. Li X; Bassi PS; Boix PP; Fang Y; Wong LH ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330 [TBL] [Abstract][Full Text] [Related]
11. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Thorne JE; Jang JW; Liu EY; Wang D Chem Sci; 2016 May; 7(5):3347-3354. PubMed ID: 29997828 [TBL] [Abstract][Full Text] [Related]
12. Interface and surface engineering of hematite photoanode for efficient solar water oxidation. Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948 [TBL] [Abstract][Full Text] [Related]
13. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH) Park J; Yoon KY; Kwak MJ; Kang J; Kim S; Chaule S; Ha SJ; Jang JH ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749965 [TBL] [Abstract][Full Text] [Related]
14. Enhanced photoelectrochemical water splitting efficiency of hematite electrodes with aqueous metal ions as in situ homogenous surface passivation agents. Wang TH; Cheng YJ; Wu YY; Lin CA; Chiang CC; Hsieh YK; Wang CF; Huang CP Phys Chem Chem Phys; 2016 Oct; 18(42):29300-29307. PubMed ID: 27731868 [TBL] [Abstract][Full Text] [Related]
15. Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes. Zhang Y; Zhang H; Ji H; Ma W; Chen C; Zhao J J Am Chem Soc; 2016 Mar; 138(8):2705-11. PubMed ID: 26859244 [TBL] [Abstract][Full Text] [Related]
16. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting. Klotz D; Grave DA; Rothschild A Phys Chem Chem Phys; 2017 Aug; 19(31):20383-20392. PubMed ID: 28721404 [TBL] [Abstract][Full Text] [Related]
17. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603 [TBL] [Abstract][Full Text] [Related]
18. New insight into the roles of oxygen vacancies in hematite for solar water splitting. Zhao X; Feng J; Chen S; Huang Y; Sum TC; Chen Z Phys Chem Chem Phys; 2017 Jan; 19(2):1074-1082. PubMed ID: 27858025 [TBL] [Abstract][Full Text] [Related]
19. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796 [TBL] [Abstract][Full Text] [Related]
20. The potential versus current state of water splitting with hematite. Zandi O; Hamann TW Phys Chem Chem Phys; 2015 Sep; 17(35):22485-503. PubMed ID: 26267040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]