These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 29792416)
1. Phosphotriesterase-Magnetic Nanoparticle Bioconjugates with Improved Enzyme Activity in a Biocatalytic Membrane Reactor. Gebreyohannes AY; Mazzei R; Marei Abdelrahim MY; Vitola G; Porzio E; Manco G; Barboiu M; Giorno L Bioconjug Chem; 2018 Jun; 29(6):2001-2008. PubMed ID: 29792416 [TBL] [Abstract][Full Text] [Related]
2. Biocatalytic membrane reactor development for organophosphates degradation. Vitola G; Mazzei R; Poerio T; Porzio E; Manco G; Perrotta I; Militano F; Giorno L J Hazard Mater; 2019 Mar; 365():789-795. PubMed ID: 30476802 [TBL] [Abstract][Full Text] [Related]
3. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. Restaino OF; Borzacchiello MG; Scognamiglio I; Fedele L; Alfano A; Porzio E; Manco G; De Rosa M; Schiraldi C BMC Biotechnol; 2018 Mar; 18(1):18. PubMed ID: 29558934 [TBL] [Abstract][Full Text] [Related]
4. Influence of Lipase Immobilization Mode on Ethyl Acetate Hydrolysis in a Continuous Solid-Gas Biocatalytic Membrane Reactor. Vitola G; Mazzei R; Poerio T; Barbieri G; Fontananova E; Büning D; Ulbricht M; Giorno L Bioconjug Chem; 2019 Aug; 30(8):2238-2246. PubMed ID: 31310713 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146 [TBL] [Abstract][Full Text] [Related]
6. Tyrosinase immobilized on a hydrophobic membrane. Algieri C; Donato L; Giorno L Biotechnol Appl Biochem; 2017 Jan; 64(1):92-99. PubMed ID: 26607971 [TBL] [Abstract][Full Text] [Related]
7. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. Chen GJ; Kuo CH; Chen CI; Yu CC; Shieh CJ; Liu YC J Biosci Bioeng; 2012 Feb; 113(2):166-72. PubMed ID: 22071144 [TBL] [Abstract][Full Text] [Related]
8. A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Merone L; Mandrich L; Rossi M; Manco G Extremophiles; 2005 Aug; 9(4):297-305. PubMed ID: 15909078 [TBL] [Abstract][Full Text] [Related]
9. Structural and Functional Characterization of New SsoPox Variant Points to the Dimer Interface as a Driver for the Increase in Promiscuous Paraoxonase Activity. Suzumoto Y; Dim O; Roviello GN; Worek F; Sussman JL; Manco G Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32121487 [TBL] [Abstract][Full Text] [Related]
10. Tuning the Properties of Polyvinylidene Fluoride/Alkali Lignin Membranes to Develop a Biocatalytic Membrane Reactor for an Organophosphorus Pesticide Degradation. Regina S; Vitola G; Mazzei R; Giorno L Membranes (Basel); 2024 Aug; 14(9):. PubMed ID: 39330527 [TBL] [Abstract][Full Text] [Related]
11. Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox. Hiblot J; Gotthard G; Elias M; Chabriere E PLoS One; 2013; 8(9):e75272. PubMed ID: 24086491 [TBL] [Abstract][Full Text] [Related]
12. Boosted large-scale production and purification of a thermostable archaeal phosphotriesterase-like lactonase for organophosphate decontamination. Restaino OF; Borzacchiello MG; Scognamiglio I; Porzio E; Manco G; Fedele L; Donatiello C; De Rosa M; Schiraldi C J Ind Microbiol Biotechnol; 2017 Mar; 44(3):363-375. PubMed ID: 28074318 [TBL] [Abstract][Full Text] [Related]
13. Immobilized biocatalytic process development and potential application in membrane separation: a review. Chakraborty S; Rusli H; Nath A; Sikder J; Bhattacharjee C; Curcio S; Drioli E Crit Rev Biotechnol; 2016; 36(1):43-58. PubMed ID: 25025272 [TBL] [Abstract][Full Text] [Related]
15. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Rémy B; Plener L; Poirier L; Elias M; Daudé D; Chabrière E Sci Rep; 2016 Nov; 6():37780. PubMed ID: 27876889 [TBL] [Abstract][Full Text] [Related]
16. A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Porzio E; Merone L; Mandrich L; Rossi M; Manco G Biochimie; 2007 May; 89(5):625-36. PubMed ID: 17337320 [TBL] [Abstract][Full Text] [Related]
17. Hyperthermophilic phosphotriesterases/lactonases for the environment and human health. Mandrich L; Merone L; Manco G Environ Technol; 2010 Sep; 31(10):1115-27. PubMed ID: 20718294 [TBL] [Abstract][Full Text] [Related]
18. Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase. Elias M; Dupuy J; Merone L; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Jul; 63(Pt 7):553-5. PubMed ID: 17620708 [TBL] [Abstract][Full Text] [Related]
19. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase. Bzdrenga J; Hiblot J; Gotthard G; Champion C; Elias M; Chabriere E BMC Res Notes; 2014 Jun; 7():333. PubMed ID: 24894602 [TBL] [Abstract][Full Text] [Related]
20. Development of a Novel Immobilization Method by Using Microgels to Keep Enzyme in Hydrated Microenvironment in Porous Hydrophobic Membranes. Vitola G; Büning D; Schumacher J; Mazzei R; Giorno L; Ulbricht M Macromol Biosci; 2017 May; 17(5):. PubMed ID: 28026147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]