These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 29792417)

  • 21. Convection inside condensing and evaporating droplets of aqueous solution.
    Pradhan TK; Panigrahi PK
    Soft Matter; 2018 May; 14(21):4335-4343. PubMed ID: 29761195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-driven motion of water droplets with directional control on nanostructured surfaces.
    An S; Zhu M; Gu K; Jiang M; Shen Q; Fu B; Song C; Tao P; Deng T; Shang W
    Nanoscale; 2020 Feb; 12(7):4295-4301. PubMed ID: 32025690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced condensation on lubricant-impregnated nanotextured surfaces.
    Anand S; Paxson AT; Dhiman R; Smith JD; Varanasi KK
    ACS Nano; 2012 Nov; 6(11):10122-9. PubMed ID: 23030619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities.
    Wang X; Xu B; Chen Z; Yang Y; Cao Q
    Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation, growth and applications of femtoliter droplets on a microlens.
    Lei L; Li J; Yu H; Bao L; Peng S; Zhang X
    Phys Chem Chem Phys; 2018 Feb; 20(6):4226-4237. PubMed ID: 29364296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dewetting from Amphiphilic Minichannel Surfaces during Condensation.
    Winter RL; McCarthy M
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7815-7825. PubMed ID: 31944655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rationally 3D-Textured Copper Surfaces for Laplace Pressure Imbalance-Induced Enhancement in Dropwise Condensation.
    Sharma CS; Stamatopoulos C; Suter R; von Rohr PR; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29127-29135. PubMed ID: 30067013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P; Li Z; Pauls A; Miljkovic N
    Langmuir; 2015 Jul; 31(28):7885-96. PubMed ID: 26110977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioinspired one-dimensional materials for directional liquid transport.
    Ju J; Zheng Y; Jiang L
    Acc Chem Res; 2014 Aug; 47(8):2342-52. PubMed ID: 25019657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality.
    Sett S; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36400-36408. PubMed ID: 28950702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stretch-Enhanced Anisotropic Wetting on Transparent Elastomer Film for Controlled Liquid Transport.
    Li Y; Zhang Q; Chen R; Yan Y; Sun Z; Zhang X; Tian D; Jiang L
    ACS Nano; 2021 Dec; 15(12):19981-19989. PubMed ID: 34841855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.
    Garimella MM; Koppu S; Kadlaskar SS; Pillutla V; Abhijeet ; Choi W
    J Colloid Interface Sci; 2017 Nov; 505():1065-1073. PubMed ID: 28715857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.
    Chen X; Patel RS; Weibel JA; Garimella SV
    Sci Rep; 2016 Jan; 6():18649. PubMed ID: 26725512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Nam Y; Lopez K; Dou N; Sack J; Wang EN
    Nano Lett; 2013 Jan; 13(1):179-87. PubMed ID: 23190055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove.
    Lu D; Zhao M; Zhang H; Yang Y; Zheng Y
    Langmuir; 2020 May; 36(19):5444-5453. PubMed ID: 32311257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oil droplet self-transportation on oleophobic surfaces.
    Li J; Qin QH; Shah A; Ras RH; Tian X; Jokinen V
    Sci Adv; 2016 Jun; 2(6):e1600148. PubMed ID: 27386574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coalescence-Induced Jumping Droplets on Nanostructured Biphilic Surfaces with Contact Electrification Effects.
    Zhu Y; Tso CY; Ho TC; Leung MKH; Yao S
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11470-11479. PubMed ID: 33630565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultimate jumping of coalesced droplets on superhydrophobic surfaces.
    Yuan Z; Gao S; Hu Z; Dai L; Hou H; Chu F; Wu X
    J Colloid Interface Sci; 2021 Apr; 587():429-436. PubMed ID: 33383432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.