These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High-throughput measurement of ionic conductivity in composition-spread thin films. Duan H; Yuan CC; Becerra N; Small LJ; Chang A; Gregoire JM; van Dover RB ACS Comb Sci; 2013 Jun; 15(6):273-7. PubMed ID: 23642495 [TBL] [Abstract][Full Text] [Related]
3. High-throughput measurements of thermochromic behavior in V(1-x)Nb(x)O(2) combinatorial thin film libraries. Barron SC; Gorham JM; Patel MP; Green ML ACS Comb Sci; 2014 Oct; 16(10):526-34. PubMed ID: 25180465 [TBL] [Abstract][Full Text] [Related]
4. Development of a High-Throughput Screening Method for Oxide-Ion Conductors and Its Application to Bismuth-Based Oxide Library Thin Films. Matsubara M; Suzumura A; Tajima S; Asahi R ACS Comb Sci; 2019 May; 21(5):400-407. PubMed ID: 30844232 [TBL] [Abstract][Full Text] [Related]
5. High-Throughput Synthesis and Characterization of Eu Doped Ba Frost S; Guérin S; Hayden BE; Soulié JP; Vian C ACS Comb Sci; 2018 Jul; 20(7):451-460. PubMed ID: 29878748 [TBL] [Abstract][Full Text] [Related]
7. Spray Pyrolysis as a Combinatorial Method for the Generation of Photocatalyst Libraries. Compton JS; Peterson CA; Dervishogullari D; Sharpe LR ACS Comb Sci; 2019 Jun; 21(6):489-499. PubMed ID: 31144806 [TBL] [Abstract][Full Text] [Related]
8. FTO Darkening Rate as a Qualitative, High-Throughput Mapping Method for Screening Li-Ionic Conduction in Thin Solid Electrolytes. Tirosh S; Aloni N; Meir S; Zaban A; Cahen D; Golodnitsky D ACS Comb Sci; 2020 Jan; 22(1):18-24. PubMed ID: 31725266 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF. Lai W; Haile SM Phys Chem Chem Phys; 2008 Feb; 10(6):865-83. PubMed ID: 18231690 [TBL] [Abstract][Full Text] [Related]
10. Moving Electrode Impedance Spectroscopy for Accurate Conductivity Measurements of Corrosive Ionic Media. Doppelhammer N; Pellens N; Martens J; Kirschhock CEA; Jakoby B; Reichel EK ACS Sens; 2020 Nov; 5(11):3392-3397. PubMed ID: 33107724 [TBL] [Abstract][Full Text] [Related]
11. A correlation between the ionic conductivities and the formation enthalpies of trivalent-doped ceria at relatively low temperatures. Avila-Paredes HJ; Shvareva T; Chen W; Navrotsky A; Kim S Phys Chem Chem Phys; 2009 Oct; 11(38):8580-5. PubMed ID: 19774290 [TBL] [Abstract][Full Text] [Related]
12. Role of Associated Defects in Oxygen Ion Conduction and Surface Exchange Reaction for Epitaxial Samaria-Doped Ceria Thin Films as Catalytic Coatings. Yang N; Shi Y; Schweiger S; Strelcov E; Belianinov A; Foglietti V; Orgiani P; Balestrino G; Kalinin SV; Rupp JL; Aruta C ACS Appl Mater Interfaces; 2016 Jun; 8(23):14613-21. PubMed ID: 27192540 [TBL] [Abstract][Full Text] [Related]
13. Electrical and microstructural characterization of ceramic gadolinium-doped ceria electrolytes for ITSOFCs by sol-gel route. Accardo G; Ferone C; Cioffi R; Frattini D; Spiridigliozzi L; Dell'Agli G J Appl Biomater Funct Mater; 2016 Apr; 14(1):e35-41. PubMed ID: 26952587 [TBL] [Abstract][Full Text] [Related]
14. Performance Enhancement of Ce Pikalova E; Kalinina E Membranes (Basel); 2023 Apr; 13(5):. PubMed ID: 37233545 [TBL] [Abstract][Full Text] [Related]
16. A Bulk-Heterostructure Nanocomposite Electrolyte of Ce Cai Y; Chen Y; Akbar M; Jin B; Tu Z; Mushtaq N; Wang B; Qu X; Xia C; Huang Y Nanomicro Lett; 2021 Jan; 13(1):46. PubMed ID: 34138221 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical behavior of thin-film Sm-doped ceria: insights from the point-contact configuration. Oh TS; Haile SM Phys Chem Chem Phys; 2015 May; 17(20):13501-11. PubMed ID: 25932615 [TBL] [Abstract][Full Text] [Related]
19. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells. Fan L; Wang C; Di J; Chen M; Zheng J; Zhu B J Nanosci Nanotechnol; 2012 Jun; 12(6):4941-5. PubMed ID: 22905555 [TBL] [Abstract][Full Text] [Related]
20. Niobium Oxide Films Deposited by Reactive Sputtering: Effect of Oxygen Flow Rate. Fernandes SL; Affonço LJ; Junior RAR; da Silva JHD; Longo E; Graeff CFO J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]