BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 29792887)

  • 21. Auditory-motor coupling affects phonetic encoding.
    Schmidt-Kassow M; Thöne K; Kaiser J
    Brain Res; 2019 Aug; 1716():39-49. PubMed ID: 29191770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Delta, theta, beta, and gamma brain oscillations index levels of auditory sentence processing.
    Mai G; Minett JW; Wang WS
    Neuroimage; 2016 Jun; 133():516-528. PubMed ID: 26931813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure.
    Henry MJ; Herrmann B; Obleser J
    J Neurosci; 2016 Jan; 36(3):860-71. PubMed ID: 26791216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A California sea lion (Zalophus californianus) can keep the beat: motor entrainment to rhythmic auditory stimuli in a non vocal mimic.
    Cook P; Rouse A; Wilson M; Reichmuth C
    J Comp Psychol; 2013 Nov; 127(4):412-27. PubMed ID: 23544769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ability to move to a beat is linked to the consistency of neural responses to sound.
    Tierney A; Kraus N
    J Neurosci; 2013 Sep; 33(38):14981-8. PubMed ID: 24048827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural entrainment to the rhythmic structure of music.
    Tierney A; Kraus N
    J Cogn Neurosci; 2015 Feb; 27(2):400-8. PubMed ID: 25170794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: a perturbational approach by rTMS.
    Giovannelli F; Innocenti I; Rossi S; Borgheresi A; Ragazzoni A; Zaccara G; Viggiano MP; Cincotta M
    Cereb Cortex; 2014 Apr; 24(4):1009-16. PubMed ID: 23236203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of temporal unpredictability on the electrophysiological mechanisms of neural entrainment.
    Vilà-Balló A; Marti-Marca A; Torralba Cuello M; Soto-Faraco S; Pozo-Rosich P
    Psychophysiology; 2022 Nov; 59(11):e14108. PubMed ID: 35678104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency Selectivity of Persistent Cortical Oscillatory Responses to Auditory Rhythmic Stimulation.
    Pesnot Lerousseau J; Trébuchon A; Morillon B; Schön D
    J Neurosci; 2021 Sep; 41(38):7991-8006. PubMed ID: 34301825
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rhythmicity facilitates pitch discrimination: Differential roles of low and high frequency neural oscillations.
    Chang A; Bosnyak DJ; Trainor LJ
    Neuroimage; 2019 Sep; 198():31-43. PubMed ID: 31059798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements.
    Varlet M; Wade A; Novembre G; Keller PE
    Neuroscience; 2017 May; 350():75-84. PubMed ID: 28323009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia.
    Kwon JS; O'Donnell BF; Wallenstein GV; Greene RW; Hirayasu Y; Nestor PG; Hasselmo ME; Potts GF; Shenton ME; McCarley RW
    Arch Gen Psychiatry; 1999 Nov; 56(11):1001-5. PubMed ID: 10565499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Now I am ready-now i am not: The influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials.
    Schulz H; Ubelacker T; Keil J; Müller N; Weisz N
    Cereb Cortex; 2014 Jul; 24(7):1708-19. PubMed ID: 23395847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhythmic Temporal Expectation Boosts Neural Activity by Increasing Neural Gain.
    Auksztulewicz R; Myers NE; Schnupp JW; Nobre AC
    J Neurosci; 2019 Dec; 39(49):9806-9817. PubMed ID: 31662425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchronizing with auditory and visual rhythms: an fMRI assessment of modality differences and modality appropriateness.
    Hove MJ; Fairhurst MT; Kotz SA; Keller PE
    Neuroimage; 2013 Feb; 67():313-21. PubMed ID: 23207574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entrainment and synchronization of brain oscillations to auditory stimulations.
    Henao D; Navarrete M; Valderrama M; Le Van Quyen M
    Neurosci Res; 2020 Jul; 156():271-278. PubMed ID: 32201357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single (1:1) vs. double (1:2) metronomes for the spontaneous entrainment and stabilisation of human rhythmic movements.
    Varlet M; Williams R; Bouvet C; Keller PE
    Exp Brain Res; 2018 Dec; 236(12):3341-3350. PubMed ID: 30255198
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Premotor neural correlates of predictive motor timing for speech production and hand movement: evidence for a temporal predictive code in the motor system.
    Johari K; Behroozmand R
    Exp Brain Res; 2017 May; 235(5):1439-1453. PubMed ID: 28238047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural entrainment to the beat in multiple frequency bands in 6-7-year-old children.
    Maróti E; Honbolygó F; Weiss B
    Int J Psychophysiol; 2019 Jul; 141():45-55. PubMed ID: 31078641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical correlates of response time slowing in older adults: ERP and ERD/ERS analyses during passive ankle movement.
    Toledo DR; Manzano GM; Barela JA; Kohn AF
    Clin Neurophysiol; 2016 Jan; 127(1):655-663. PubMed ID: 26024982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.