These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 29793143)
1. Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids. Castro MJ; Richmond V; Faraoni MB; Murray AP Bioorg Chem; 2018 Sep; 79():301-309. PubMed ID: 29793143 [TBL] [Abstract][Full Text] [Related]
2. Preparation, anticholinesterase activity and molecular docking of new lupane derivatives. Castro MJ; Richmond V; Romero C; Maier MS; Estévez-Braun A; Ravelo AG; Faraoni MB; Murray AP Bioorg Med Chem; 2014 Jul; 22(13):3341-50. PubMed ID: 24835788 [TBL] [Abstract][Full Text] [Related]
3. Triterpene-Based Carboxamides Act as Good Inhibitors of Butyrylcholinesterase. Loesche A; Kahnt M; Serbian I; Brandt W; Csuk R Molecules; 2019 Mar; 24(5):. PubMed ID: 30866589 [TBL] [Abstract][Full Text] [Related]
4. N-methylated diazabicyclo[3.2.2]nonane substituted triterpenoic acids are excellent, hyperbolic and selective inhibitors for butyrylcholinesterase. Heise N; Friedrich S; Temml V; Schuster D; Siewert B; Csuk R Eur J Med Chem; 2022 Jan; 227():113947. PubMed ID: 34731766 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Liu HR; Liu XJ; Fan HQ; Tang JJ; Gao XH; Liu WK Bioorg Med Chem; 2014 Nov; 22(21):6124-33. PubMed ID: 25260958 [TBL] [Abstract][Full Text] [Related]
6. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies. Mutahir S; Jończyk J; Bajda M; Khan IU; Khan MA; Ullah N; Ashraf M; Qurat-ul-Ain ; Riaz S; Hussain S; Yar M Bioorg Chem; 2016 Feb; 64():13-20. PubMed ID: 26595185 [TBL] [Abstract][Full Text] [Related]
7. Amino derivatives of platanic acid act as selective and potent inhibitors of butyrylcholinesterase. Heller L; Kahnt M; Loesche A; Grabandt P; Schwarz S; Brandt W; Csuk R Eur J Med Chem; 2017 Jan; 126():652-668. PubMed ID: 27936444 [TBL] [Abstract][Full Text] [Related]
8. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Loesche A; Köwitsch A; Lucas SD; Al-Halabi Z; Sippl W; Al-Harrasi A; Csuk R Bioorg Chem; 2019 Apr; 85():23-32. PubMed ID: 30599410 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Mughal EU; Sadiq A; Murtaza S; Rafique H; Zafar MN; Riaz T; Khan BA; Hameed A; Khan KM Bioorg Med Chem; 2017 Jan; 25(1):100-106. PubMed ID: 27780618 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of some new 3-coumaranone and coumarin derivatives as dual inhibitors of acetyl- and butyrylcholinesterase. Alipour M; Khoobi M; Nadri H; Sakhteman A; Moradi A; Ghandi M; Foroumadi A; Shafiee A Arch Pharm (Weinheim); 2013 Aug; 346(8):577-87. PubMed ID: 23852709 [TBL] [Abstract][Full Text] [Related]
11. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies. Mughal EU; Sadiq A; Ashraf J; Zafar MN; Sumrra SH; Tariq R; Mumtaz A; Javid A; Khan BA; Ali A; Javed CO Bioorg Chem; 2019 Oct; 91():103124. PubMed ID: 31319297 [TBL] [Abstract][Full Text] [Related]
12. New potent human acetylcholinesterase inhibitors in the tetracyclic triterpene series with inhibitory potency on amyloid β aggregation. Rouleau J; Iorga BI; Guillou C Eur J Med Chem; 2011 Jun; 46(6):2193-205. PubMed ID: 21435752 [TBL] [Abstract][Full Text] [Related]
13. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors. Sheng R; Lin X; Zhang J; Chol KS; Huang W; Yang B; He Q; Hu Y Bioorg Med Chem; 2009 Sep; 17(18):6692-8. PubMed ID: 19692250 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of physostigmine analogues and evaluation of their anticholinesterase activities. Zhan ZJ; Bian HL; Wang JW; Shan WG Bioorg Med Chem Lett; 2010 Mar; 20(5):1532-4. PubMed ID: 20144867 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids. Kazakova O; Smirnova I; Lopatina T; Giniyatullina G; Petrova A; Khusnutdinova E; Csuk R; Serbian I; Loesche A Bioorg Chem; 2020 Aug; 101():104001. PubMed ID: 32683137 [TBL] [Abstract][Full Text] [Related]
16. Investigation of potent inhibitors of cholinesterase based on thiourea and pyrazoline derivatives: Synthesis, inhibition assay and molecular modeling studies. Mumtaz A; Majeed A; Zaib S; Ur Rahman S; Hameed S; Saeed A; Rafique H; Mughal E; Maalik A; Hussain I; Iqbal J Bioorg Chem; 2019 Sep; 90():103036. PubMed ID: 31271943 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, biological evaluation, and molecular modeling of berberine derivatives as potent acetylcholinesterase inhibitors. Huang L; Shi A; He F; Li X Bioorg Med Chem; 2010 Feb; 18(3):1244-51. PubMed ID: 20056426 [TBL] [Abstract][Full Text] [Related]
18. Diethoxyphosphoryloxy-oleanolic acid is a nanomolar-inhibitor of butyrylcholinesterase. Petrova AV; Poptsov AI; Heise NV; Csuk R; Kazakova OB Chem Biol Drug Des; 2024 Mar; 103(3):e14506. PubMed ID: 38480508 [TBL] [Abstract][Full Text] [Related]
19. New potent acetylcholinesterase inhibitors in the tetracyclic triterpene series. Sauvaître T; Barlier M; Herlem D; Gresh N; Chiaroni A; Guenard D; Guillou C J Med Chem; 2007 Nov; 50(22):5311-23. PubMed ID: 17902635 [TBL] [Abstract][Full Text] [Related]