These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 29793211)

  • 41. Synthesis of novel guttiferone A derivatives: in-vitro evaluation toward Plasmodium falciparum, Trypanosoma brucei and Leishmania donovani.
    Fromentin Y; Gaboriaud-Kolar N; Lenta BN; Wansi JD; Buisson D; Mouray E; Grellier P; Loiseau PM; Lallemand MC; Michel S
    Eur J Med Chem; 2013 Jul; 65():284-94. PubMed ID: 23727538
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and antileishmanial activity of novel pyridinium-hydrazone derivatives.
    Alptuzun V; Cakiroglu G; Limoncu ME; Erac B; Hosgor-Limoncu M; Erciyas E
    J Enzyme Inhib Med Chem; 2013 Oct; 28(5):960-7. PubMed ID: 22803671
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antileishmanial activity evaluation of bis-lawsone analogs and DNA topoisomerase-I inhibition studies.
    Sharma G; Chowdhury S; Sinha S; Majumder HK; Kumar SV
    J Enzyme Inhib Med Chem; 2014 Apr; 29(2):185-9. PubMed ID: 23534930
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Docking, Antioxidant, Anticancer and Antileishmanial Effects of Newly Synthesized Quinoline Derivatives.
    Malghani Z; Khan AU; Faheem M; Danish MZ; Nadeem H; Ansari SF; Maqbool M
    Anticancer Agents Med Chem; 2020; 20(13):1516-1529. PubMed ID: 32416701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design, synthesis, and antiprotozoal evaluation of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives.
    Guillon J; Cohen A; Boudot C; Valle A; Milano V; Das RN; Guédin A; Moreau S; Ronga L; Savrimoutou S; Demourgues M; Reviriego E; Rubio S; Ferriez S; Agnamey P; Pauc C; Moukha S; Dozolme P; Nascimento SD; Laumaillé P; Bouchut A; Azas N; Mergny JL; Mullié C; Sonnet P; Courtioux B
    J Enzyme Inhib Med Chem; 2020 Dec; 35(1):432-459. PubMed ID: 31899980
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents.
    Ramírez-Prada J; Robledo SM; Vélez ID; Crespo MDP; Quiroga J; Abonia R; Montoya A; Svetaz L; Zacchino S; Insuasty B
    Eur J Med Chem; 2017 May; 131():237-254. PubMed ID: 28329730
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discovery of 3,3'-diindolylmethanes as potent antileishmanial agents.
    Bharate SB; Bharate JB; Khan SI; Tekwani BL; Jacob MR; Mudududdla R; Yadav RR; Singh B; Sharma PR; Maity S; Singh B; Khan IA; Vishwakarma RA
    Eur J Med Chem; 2013 May; 63():435-43. PubMed ID: 23517732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diastereoselective synthesis of substituted hexahydrobenzo[de]isochromanes and evaluation of their antileishmanial activity.
    Saikia AK; Sultana S; Devi NR; Deka MJ; Tiwari K; Dubey VK
    Org Biomol Chem; 2016 Jan; 14(3):970-9. PubMed ID: 26625982
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Targeting the human parasite Leishmania donovani: discovery of a new promising anti-infectious pharmacophore in 3-nitroimidazo[1,2-a]pyridine series.
    Castera-Ducros C; Paloque L; Verhaeghe P; Casanova M; Cantelli C; Hutter S; Tanguy F; Laget M; Remusat V; Cohen A; Crozet MD; Rathelot P; Azas N; Vanelle P
    Bioorg Med Chem; 2013 Nov; 21(22):7155-64. PubMed ID: 24080103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple and efficient synthesis of 5'-aryl-5'-deoxyguanosine analogs by azide-alkyne click reaction and their antileishmanial activities.
    Daligaux P; Pomel S; Leblanc K; Loiseau PM; Cavé C
    Mol Divers; 2016 May; 20(2):507-19. PubMed ID: 26754628
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents.
    Tiwari S; Kirar S; Banerjee UC; Neerupudi KB; Singh S; Wani AA; Bharatam PV; Singh IP
    Bioorg Chem; 2020 Jun; 99():103787. PubMed ID: 32251947
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of oxysterols and nitrogenous sterols with antileishmanial and trypanocidal activities.
    Bazin MA; Loiseau PM; Bories C; Letourneux Y; Rault S; El Kihel L
    Eur J Med Chem; 2006 Oct; 41(10):1109-16. PubMed ID: 16949702
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemotherapy of leishmaniasis part-VIII: synthesis and bioevaluation of novel chalcones.
    Suryawanshi SN; Chandra N; Kumar P; Porwal J; Gupta S
    Eur J Med Chem; 2008 Nov; 43(11):2473-8. PubMed ID: 18243420
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and in vitro antileishmanial efficacy of novel benzothiadiazine-1,1-dioxide derivatives.
    Mangwegape DK; Zuma NH; Aucamp J; N'Da DD
    Arch Pharm (Weinheim); 2021 May; 354(5):e2000280. PubMed ID: 33491807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and biological evaluation of trifluralin analogues as antileishmanial agents.
    Esteves MA; Fragiadaki I; Lopes R; Scoulica E; Cruz ME
    Bioorg Med Chem; 2010 Jan; 18(1):274-81. PubMed ID: 19926293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity.
    Di Pietro O; Vicente-García E; Taylor MC; Berenguer D; Viayna E; Lanzoni A; Sola I; Sayago H; Riera C; Fisa R; Clos MV; Pérez B; Kelly JM; Lavilla R; Muñoz-Torrero D
    Eur J Med Chem; 2015 Nov; 105():120-37. PubMed ID: 26479031
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New antiprotozoal agents: their synthesis and biological evaluations.
    Upadhayaya RS; Dixit SS; Földesi A; Chattopadhyaya J
    Bioorg Med Chem Lett; 2013 May; 23(9):2750-8. PubMed ID: 23518280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Click chemistry decoration of amino sterols as promising strategy to developed new leishmanicidal drugs.
    Porta EO; Carvalho PB; Avery MA; Tekwani BL; Labadie GR
    Steroids; 2014 Jan; 79():28-36. PubMed ID: 24200958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel hybrid selenosulfonamides as potent antileishmanial agents.
    Baquedano Y; Moreno E; Espuelas S; Nguewa P; Font M; Gutierrez KJ; Jiménez-Ruiz A; Palop JA; Sanmartín C
    Eur J Med Chem; 2014 Mar; 74():116-23. PubMed ID: 24448421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis of chromenochalcones and evaluation of their in vitro antileishmanial activity.
    Narender T; Khaliq T; Shweta ; Nishi ; Goyal N; Gupta S
    Bioorg Med Chem; 2005 Dec; 13(23):6543-50. PubMed ID: 16185885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.