BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29793336)

  • 1. Computational Investigation of the Effect of Backbone Chiral Inversions on Polypeptide Structure.
    Zerze GH; Khan MN; Stillinger FH; Debenedetti PG
    J Phys Chem B; 2018 Jun; 122(24):6357-6363. PubMed ID: 29793336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heterochiral inversions on the structure of a β-hairpin peptide.
    Zerze GH; Stillinger FH; Debenedetti PG
    Proteins; 2019 Jul; 87(7):569-578. PubMed ID: 30811673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of terminal achiral and chiral residues on the conformational behaviour of poly Δ(z)Phe and analysis of various interactions.
    Nandel FS; Kaur H
    Indian J Biochem Biophys; 2003 Aug; 40(4):265-73. PubMed ID: 22900319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. External chirality-triggered helicity control promoted by introducing a beta-Ala residue into the N-terminus of chiral peptides.
    Inai Y; Komori H
    Biomacromolecules; 2004; 5(4):1231-40. PubMed ID: 15244435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 12/10-Helical β-Peptide with Dynamic Folding Propensity: Coexistence of Right- and Left-Handed Helices in an Enantiomeric Foldamer.
    Shin S; Lee M; Guzei IA; Kang YK; Choi SH
    J Am Chem Soc; 2016 Oct; 138(40):13390-13395. PubMed ID: 27626645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the role of the C-H...O hydrogen bond stabilized polypeptide chain reversal at the C-terminus of designed peptide helices. Structural characterization of three decapeptides.
    Aravinda S; Shamala N; Bandyopadhyay A; Balaram P
    J Am Chem Soc; 2003 Dec; 125(49):15065-75. PubMed ID: 14653741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noncovalent chiral domino effect on one-handed helix of nonapeptide containing a midpoint L-residue.
    Inai Y; Komori H; Takasu A; Hirabayashi T
    Biomacromolecules; 2003; 4(1):122-8. PubMed ID: 12523856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An observation of non-superimposable stereogeometrical features in a non-chiral one-component beta-Ala model peptide.
    Bhadbhade MM; Kishore R
    Biochem Biophys Res Commun; 2004 Apr; 316(4):1029-36. PubMed ID: 15044088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated evolution of emergent chiral structures in polyalanine.
    Nanda V; Degrado WF
    J Am Chem Soc; 2004 Nov; 126(44):14459-67. PubMed ID: 15521766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent.
    Wang X; Deng B; Sun Z
    J Mol Model; 2018 Dec; 25(1):3. PubMed ID: 30542771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scrutiny of chain-length and N-terminal effects in α-helix folding: a molecular dynamics study on polyalanine peptides.
    Goyal B; Kumar A; Srivastava KR; Durani S
    J Biomol Struct Dyn; 2017 Jul; 35(9):1923-1935. PubMed ID: 27310440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of ground-state chiral induction in small peptides: comparison of the relative stability of selected amino acid dimers and oligomers in homochiral and heterochiral combinations.
    Zhou Y; Oostenbrink C; Jongejan A; Van Gunsteren WF; Hagen WR; De Leeuw SW; Jongejan JA
    J Comput Chem; 2006 May; 27(7):857-67. PubMed ID: 16541426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting diverse stereochemistry of β-amino acids: toward a rational design of sheet-forming β-peptide systems.
    Pohl G; Beke-Somfai T; Csizmadia IG; Perczel A
    Amino Acids; 2012 Aug; 43(2):735-49. PubMed ID: 22057667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing of peptides with left handed helical structure by incorporating the unusual amino acids.
    Nandel FS; Malik N; Virdi M; Singh B
    Indian J Biochem Biophys; 1999 Jun; 36(3):195-203. PubMed ID: 10650718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of noncovalent chiral information along an optically inactive helical peptide chain: allosteric control of asymmetry of the C-terminal site by external molecule that binds to the N-terminal site.
    Ousaka N; Inai Y
    J Org Chem; 2009 Feb; 74(4):1429-39. PubMed ID: 19053595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for the noncovalent chiral domino effect: new paradigm for the chiral role of the N-terminal segment in a 3(10)-helix.
    Inai Y; Ousaka N; Okabe T
    J Am Chem Soc; 2003 Jul; 125(27):8151-62. PubMed ID: 12837085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational preferences of a short Aib/Ala-based water-soluble peptide as a function of temperature.
    Banerjee R; Chattopadhyay S; Basu G
    Proteins; 2009 Jul; 76(1):184-200. PubMed ID: 19137603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Selective Peptide Catalysts with Secondary Structural Frameworks.
    Akagawa K; Kudo K
    Acc Chem Res; 2017 Oct; 50(10):2429-2439. PubMed ID: 28872296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral transcription and retentive helical memory: probing peptide auxiliaries appended with naphthalenediimides for their one-dimensional molecular organization.
    Pandeeswar M; Avinash MB; Govindaraju T
    Chemistry; 2012 Apr; 18(16):4818-22. PubMed ID: 22434671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating Polarizability of Backbone Hydrogen Bonds Improved Folding of Short α-Helical Peptides.
    Zhang D; Lazim R; Yip YM
    Biophys J; 2019 Dec; 117(11):2079-2086. PubMed ID: 31685242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.