These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29793765)

  • 1. Stepping boundary of external force-controlled perturbations of varying durations: Comparison of experimental data and model simulations.
    Robert T; Vallée P; Tisserand R; Buloup F; Bariatinsky D; Vercher JL; Fitzpatrick RC; Mille ML
    J Biomech; 2018 Jun; 75():89-95. PubMed ID: 29793765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single and multiple step balance recovery responses can be different at first step lift-off following lateral waist-pull perturbations in older adults.
    Fujimoto M; Bair WN; Rogers MW
    J Biomech; 2017 Apr; 55():41-47. PubMed ID: 28285746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepping threshold with platform-translation and shoulder-pull postural perturbation methods.
    Verniba D; Gage WH
    J Biomech; 2019 Sep; 94():224-229. PubMed ID: 31395277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot.
    Jacobs JV; Horak FB
    Exp Brain Res; 2007 May; 179(1):29-42. PubMed ID: 17091288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults.
    Pai YC; Rogers MW; Patton J; Cain TD; Hanke TA
    J Biomech; 1998 Dec; 31(12):1111-8. PubMed ID: 9882043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorimotor and neuropsychological correlates of force perturbations that induce stepping in older adults.
    Sturnieks DL; Menant J; Vanrenterghem J; Delbaere K; Fitzpatrick RC; Lord SR
    Gait Posture; 2012 Jul; 36(3):356-60. PubMed ID: 22739050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical influences on balance recovery by stepping.
    Hsiao ET; Robinovitch SN
    J Biomech; 1999 Oct; 32(10):1099-106. PubMed ID: 10476848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body configuration at first stepping-foot contact predicts backward balance recovery capacity in people with chronic stroke.
    de Kam D; Roelofs JMB; Geurts ACH; Weerdesteyn V
    PLoS One; 2018; 13(2):e0192961. PubMed ID: 29470535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic and behavioral analyses of protective stepping strategies and risk for falls among community living older adults.
    Bair WN; Prettyman MG; Beamer BA; Rogers MW
    Clin Biomech (Bristol, Avon); 2016 Jul; 36():74-82. PubMed ID: 27228075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of lateral destabilization on compensatory stepping responses.
    Maki BE; McIlroy WE; Perry SD
    J Biomech; 1996 Mar; 29(3):343-53. PubMed ID: 8850640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing the quick onset of stepping following postural perturbation.
    Do MC; Schneider C; Chong RK
    J Biomech; 1999 Aug; 32(8):795-802. PubMed ID: 10433421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting dynamic postural instability using center of mass time-to-contact information.
    Hasson CJ; Van Emmerik RE; Caldwell GE
    J Biomech; 2008 Jul; 41(10):2121-9. PubMed ID: 18556003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control of foot placement during compensatory stepping reactions: does speed of response take precedence over stability?
    Maki BE; McIlroy WE
    IEEE Trans Rehabil Eng; 1999 Mar; 7(1):80-90. PubMed ID: 10188610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive Balance in Individuals With Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling.
    Salot P; Patel P; Bhatt T
    Phys Ther; 2016 Mar; 96(3):338-47. PubMed ID: 26206220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial.
    Mansfield A; Peters AL; Liu BA; Maki BE
    Phys Ther; 2010 Apr; 90(4):476-91. PubMed ID: 20167644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting foot placement for balance through a simple model with swing leg dynamics.
    Zhang L; Fu C
    J Biomech; 2018 Aug; 77():155-162. PubMed ID: 30029774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepping Responses in Young and Older Adults Following a Perturbation to the Support Surface During Gait.
    McIntosh EI; Zettel JL; Vallis LA
    J Mot Behav; 2017; 49(3):288-298. PubMed ID: 27723429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel robot for imposing perturbations during overground walking: mechanism, control and normative stepping responses.
    Olenšek A; Zadravec M; Matjačić Z
    J Neuroeng Rehabil; 2016 Jun; 13(1):55. PubMed ID: 27287551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online mutability of step direction during rapid stepping reactions evoked by postural perturbation.
    Tripp BP; McIlroy WE; Maki BE
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):140-52. PubMed ID: 15068197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.