These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29793765)

  • 21. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Center of pressure control for balance maintenance during lateral waist-pull perturbations in older adults.
    Fujimoto M; Bair WN; Rogers MW
    J Biomech; 2015 Apr; 48(6):963-8. PubMed ID: 25728580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Center of pressure displacement due to graded controlled perturbations to the trunk in standing subjects: the force-impulse paradigm.
    Paterna M; Dvir Z; De Benedictis C; Maffiodo D; Franco W; Ferraresi C; Roatta S
    Eur J Appl Physiol; 2022 Feb; 122(2):425-435. PubMed ID: 34797437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The body configuration at step contact critically determines the successfulness of balance recovery in response to large backward perturbations.
    Weerdesteyn V; Laing AC; Robinovitch SN
    Gait Posture; 2012 Mar; 35(3):462-6. PubMed ID: 22196309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.
    Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE
    J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of localized muscle fatigue on recovery from a postural perturbation without stepping.
    Davidson BS; Madigan ML; Nussbaum MA; Wojcik LA
    Gait Posture; 2009 Jun; 29(4):552-7. PubMed ID: 19168359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thresholds for inducing protective stepping responses to external perturbations of human standing.
    Mille ML; Rogers MW; Martinez K; Hedman LD; Johnson ME; Lord SR; Fitzpatrick RC
    J Neurophysiol; 2003 Aug; 90(2):666-74. PubMed ID: 12711707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relating Anticipatory Postural Adjustments to Step Outcomes During Loss of Balance in People With Parkinson's Disease.
    Peterson DS; Lohse KR; Mancini M
    Neurorehabil Neural Repair; 2018 Oct; 32(10):887-898. PubMed ID: 30198384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the dynamic margins of stability for use in evaluations of balance following a support-surface perturbation.
    Inkol KA; Vallis LA
    J Biomech; 2019 Oct; 95():109302. PubMed ID: 31481246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of weight-bearing asymmetry on dynamic postural stability in healthy young individuals.
    de Kam D; Kamphuis JF; Weerdesteyn V; Geurts AC
    Gait Posture; 2016 Mar; 45():56-61. PubMed ID: 26979884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Are age-related impairments in change-in-support balance reactions dependent on the method of balance perturbation?
    Mansfield A; Maki BE
    J Biomech; 2009 May; 42(8):1023-31. PubMed ID: 19362311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial.
    Mansfield A; Peters AL; Liu BA; Maki BE
    BMC Geriatr; 2007 May; 7():12. PubMed ID: 17540020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do perturbation-evoked responses result in higher reaction time costs depending on the direction and magnitude of perturbation?
    Inkol KA; Huntley AH; Vallis LA
    Exp Brain Res; 2018 Jun; 236(6):1689-1698. PubMed ID: 29623379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Older adults exhibit variable responses in stepping behaviour following unexpected forward perturbations during gait initiation.
    Shulman D; Spencer A; Ann Vallis L
    Hum Mov Sci; 2019 Feb; 63():120-128. PubMed ID: 30513458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postural motor learning in people with Parkinson's disease.
    Peterson DS; Dijkstra BW; Horak FB
    J Neurol; 2016 Aug; 263(8):1518-29. PubMed ID: 27193311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateral Perturbation-Induced Stepping: Strategies and Predictors in Persons Poststroke.
    Gray VL; Yang CL; McCombe Waller S; Rogers MW
    J Neurol Phys Ther; 2017 Oct; 41(4):222-228. PubMed ID: 28922313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.
    Patel PJ; Bhatt T
    Neuroscience; 2016 Oct; 333():252-63. PubMed ID: 27418344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knee osteoarthritis negatively affects the recovery step following large forward-directed postural perturbations.
    Pater ML; Rosenblatt NJ; Grabiner MD
    J Biomech; 2016 May; 49(7):1128-1133. PubMed ID: 26947035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Compensatory Stepping in People With Multiple Sclerosis.
    Peterson DS; Huisinga JM; Spain RI; Horak FB
    Arch Phys Med Rehabil; 2016 Apr; 97(4):513-521. PubMed ID: 26603657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the symmetry of external perturbations affect patterns of muscle activity during gait initiation.
    Lee YJ
    Gait Posture; 2019 Jan; 67():57-64. PubMed ID: 30286317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.