BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 29793975)

  • 21. Spatial distribution of potentiated synapses in hippocampus: dependence on cellular mechanisms and network properties.
    Yeckel MF; Berger TW
    J Neurosci; 1998 Jan; 18(1):438-50. PubMed ID: 9412520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preferential frequency-dependent induction of synaptic depression by the lateral perforant path and of synaptic potentiation by the medial perforant path inputs to the dentate gyrus.
    Collitti-Klausnitzer J; Hagena H; Dubovyk V; Manahan-Vaughan D
    Hippocampus; 2021 Sep; 31(9):957-981. PubMed ID: 34002905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys.
    Bartesaghi R; Gessi T
    Hippocampus; 2004; 14(8):948-63. PubMed ID: 15390176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium homeostasis of acutely denervated and lesioned dentate gyrus in organotypic entorhino-hippocampal co-cultures.
    Müller CM; Vlachos A; Deller T
    Cell Calcium; 2010 Mar; 47(3):242-52. PubMed ID: 20053446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural injury alters proliferation and integration of adult-generated neurons in the dentate gyrus.
    Perederiy JV; Luikart BW; Washburn EK; Schnell E; Westbrook GL
    J Neurosci; 2013 Mar; 33(11):4754-67. PubMed ID: 23486947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adult-born hippocampal neurons bidirectionally modulate entorhinal inputs into the dentate gyrus.
    Luna VM; Anacker C; Burghardt NS; Khandaker H; Andreu V; Millette A; Leary P; Ravenelle R; Jimenez JC; Mastrodonato A; Denny CA; Fenton AA; Scharfman HE; Hen R
    Science; 2019 May; 364(6440):578-583. PubMed ID: 31073064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Species differences in the projections from the entorhinal cortex to the hippocampus.
    van Groen T; Kadish I; Wyss JM
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):553-6. PubMed ID: 11923027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Long-term potentiation recruits a trisynaptic excitatory associative network within the mouse dentate gyrus.
    Kleschevnikov AM; Routtenberg A
    Eur J Neurosci; 2003 Jun; 17(12):2690-702. PubMed ID: 12823476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phasic boosting of medial perforant path-evoked granule cell output time-locked to spontaneous dentate EEG spikes in awake rats.
    Bramham CR
    J Neurophysiol; 1998 Jun; 79(6):2825-32. PubMed ID: 9636089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional circuits of new neurons in the dentate gyrus.
    Vivar C; van Praag H
    Front Neural Circuits; 2013; 7():15. PubMed ID: 23443839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus.
    Dolorfo CL; Amaral DG
    J Comp Neurol; 1998 Aug; 398(1):25-48. PubMed ID: 9703026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid Aging in the Perforant Path Projections to the Rodent Dentate Gyrus.
    Amani M; Lauterborn JC; Le AA; Cox BM; Wang W; Quintanilla J; Cox CD; Gall CM; Lynch G
    J Neurosci; 2021 Mar; 41(10):2301-2312. PubMed ID: 33514675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GABA(B) receptors couple to potassium and calcium channels on identified lateral perforant pathway projection neurons.
    Wang X; Lambert NA
    J Neurophysiol; 2000 Feb; 83(2):1073-8. PubMed ID: 10669518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prolonged development of long-term potentiation at lateral entorhinal cortex synapses onto adult-born neurons.
    Vyleta NP; Snyder JS
    PLoS One; 2021; 16(6):e0253642. PubMed ID: 34143843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Excitability changes within transverse lamellae of dentate granule cells and their longitudinal spread following orthodromic or antidromic activation.
    Lømo T
    Hippocampus; 2009 Jul; 19(7):633-48. PubMed ID: 19115390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel types of frequency filtering in the lateral perforant path projections to dentate gyrus.
    Quintanilla J; Jia Y; Lauterborn JC; Pruess BS; Le AA; Cox CD; Gall CM; Lynch G; Gunn BG
    J Physiol; 2022 Aug; 600(16):3865-3896. PubMed ID: 35852108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mTOR Inhibitor Rapamycin Mitigates Perforant Pathway Neurodegeneration and Synapse Loss in a Mouse Model of Early-Stage Alzheimer-Type Tauopathy.
    Siman R; Cocca R; Dong Y
    PLoS One; 2015; 10(11):e0142340. PubMed ID: 26540269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unique processing during a period of high excitation/inhibition balance in adult-born neurons.
    Marín-Burgin A; Mongiat LA; Pardi MB; Schinder AF
    Science; 2012 Mar; 335(6073):1238-42. PubMed ID: 22282476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Running rewires the neuronal network of adult-born dentate granule cells.
    Vivar C; Peterson BD; van Praag H
    Neuroimage; 2016 May; 131():29-41. PubMed ID: 26589333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    Exp Neurol; 1996 Sep; 141(1):145-53. PubMed ID: 8797677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.