BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 29794164)

  • 1. The
    Ries LNA; José de Assis L; Rodrigues FJS; Caldana C; Rocha MC; Malavazi I; Bayram Ö; Goldman GH
    G3 (Bethesda); 2018 Jul; 8(7):2445-2463. PubMed ID: 29794164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of
    de Assis LJ; Ulas M; Ries LNA; El Ramli NAM; Sarikaya-Bayram O; Braus GH; Bayram O; Goldman GH
    mBio; 2018 Jun; 9(3):. PubMed ID: 29921666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA.
    de Assis LJ; Silva LP; Bayram O; Dowling P; Kniemeyer O; Krüger T; Brakhage AA; Chen Y; Dong L; Tan K; Wong KH; Ries LNA; Goldman GH
    mBio; 2021 Jan; 12(1):. PubMed ID: 33402538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse Regulation of the CreA Carbon Catabolite Repressor in Aspergillus nidulans.
    Ries LN; Beattie SR; Espeso EA; Cramer RA; Goldman GH
    Genetics; 2016 May; 203(1):335-52. PubMed ID: 27017621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CreA-independent carbon catabolite repression of cellulase genes by trimeric G-protein and protein kinase A in Aspergillus nidulans.
    Kunitake E; Li Y; Uchida R; Nohara T; Asano K; Hattori A; Kimura T; Kanamaru K; Kimura M; Kobayashi T
    Curr Genet; 2019 Aug; 65(4):941-952. PubMed ID: 30796472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans.
    de Assis LJ; Ries LN; Savoldi M; Dinamarco TM; Goldman GH; Brown NA
    G3 (Bethesda); 2015 Mar; 5(5):857-72. PubMed ID: 25762568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans.
    Chen Y; Dong L; Alam MA; Pardeshi L; Miao Z; Wang F; Tan K; Hynes MJ; Kelly JM; Wong KH
    mBio; 2021 Feb; 13(1):e0373421. PubMed ID: 35164551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation.
    Brock M
    Appl Environ Microbiol; 2005 Sep; 71(9):5465-75. PubMed ID: 16151139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi.
    de Assis LJ; Silva LP; Liu L; Schmitt K; Valerius O; Braus GH; Ries LNA; Goldman GH
    PLoS Genet; 2020 Aug; 16(8):e1008996. PubMed ID: 32841242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.
    Flipphi M; Oestreicher N; Nicolas V; Guitton A; Vélot C
    Fungal Genet Biol; 2014 Jul; 68():9-22. PubMed ID: 24835019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans.
    Dos Reis TF; Nitsche BM; de Lima PB; de Assis LJ; Mellado L; Harris SD; Meyer V; Dos Santos RA; Riaño-Pachón DM; Ries LN; Goldman GH
    Sci Rep; 2017 Mar; 7():45073. PubMed ID: 28361917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling.
    Flipphi M; van de Vondervoort PJ; Ruijter GJ; Visser J; Arst HN; Felenbok B
    J Biol Chem; 2003 Apr; 278(14):11849-57. PubMed ID: 12519784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol.
    Mogensen J; Nielsen HB; Hofmann G; Nielsen J
    Fungal Genet Biol; 2006 Aug; 43(8):593-603. PubMed ID: 16698295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pkaB gene encoding the secondary protein kinase A catalytic subunit has a synthetic lethal interaction with pkaA and plays overlapping and opposite roles in Aspergillus nidulans.
    Ni M; Rierson S; Seo JA; Yu JH
    Eukaryot Cell; 2005 Aug; 4(8):1465-76. PubMed ID: 16087751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans.
    David H; Hofmann G; Oliveira AP; Jarmer H; Nielsen J
    Genome Biol; 2006; 7(11):R108. PubMed ID: 17107606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.
    Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP
    FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-rhamnose induction of Aspergillus nidulans α-L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake.
    Tamayo-Ramos JA; Flipphi M; Pardo E; Manzanares P; Orejas M
    Microb Cell Fact; 2012 Feb; 11():26. PubMed ID: 22353731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response.
    Krohn NG; Brown NA; Colabardini AC; Reis T; Savoldi M; Dinamarco TM; Goldman MH; Goldman GH
    G3 (Bethesda); 2014 Jan; 4(1):49-62. PubMed ID: 24192833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans.
    Suzuki Y; Murray SL; Wong KH; Davis MA; Hynes MJ
    Mol Microbiol; 2012 Jun; 84(5):942-64. PubMed ID: 22500966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.