These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29794333)

  • 1. Facile synthesis of AuPd nanoparticles anchored on TiO
    Jiang Y; Chen M; Yang Y; Zhang X; Xiao X; Fan X; Wang C; Chen L
    Nanotechnology; 2018 Aug; 29(33):335402. PubMed ID: 29794333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron nitride nanosheets supported highly homogeneous bimetallic AuPd alloy nanoparticles catalyst for hydrogen production from formic acid.
    Shaybanizadeh S; Najafi Chermahini A; Luque R
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35294941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved hydrogen evolution performance by engineering bimetallic AuPd loaded on amino and nitrogen functionalized mesoporous hollow carbon spheres.
    Wang L; Zhao Z; Wang H; Chi Y
    RSC Adv; 2022 Apr; 12(19):11732-11739. PubMed ID: 35481096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amine-Functionalized Carbon Bowl-Supported Pd-La(OH)
    Sun X; Zhang G; Yao Q; Li H; Feng G; Lu ZH
    Inorg Chem; 2022 Nov; 61(45):18102-18111. PubMed ID: 36325636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excellent catalysis of TiO
    Zhang M; Xiao X; Wang X; Chen M; Lu Y; Liu M; Chen L
    Nanoscale; 2019 Apr; 11(15):7465-7473. PubMed ID: 30942207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au
    Guo XT; Zhang J; Chi JC; Li ZH; Liu YC; Liu XR; Zhang SY
    RSC Adv; 2019 Feb; 9(11):5995-6002. PubMed ID: 35517262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Atom Ni Supported on TiO
    Zhang J; Wang W; Chen X; Jin J; Yan X; Huang J
    J Am Chem Soc; 2024 Apr; 146(15):10432-10442. PubMed ID: 38498436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anchoring IrPdAu Nanoparticles on NH
    Luo Y; Yang Q; Nie W; Yao Q; Zhang Z; Lu ZH
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8082-8090. PubMed ID: 31986879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Evolution from Additive-Free Formic Acid Dehydrogenation Using Weakly Basic Resin-Supported Pd Catalyst.
    Li L; Chen X; Zhang C; Zhang G; Liu Z
    ACS Omega; 2022 May; 7(17):14944-14951. PubMed ID: 35557660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pd Nanoparticles Supported on N-Doped TiO
    Liu X; Zhang X; Chen W
    Langmuir; 2022 Nov; 38(44):13532-13542. PubMed ID: 36300888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Dispersed Pd-CeO
    Li C; He G; Qu Z; Zhang K; Guo L; Zhang T; Zhang J; Sun Q; Mei D; Yu J
    Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202409001. PubMed ID: 38990826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane.
    Gao M; Yu Y; Yang W; Li J; Xu S; Feng M; Li H
    Nanoscale; 2019 Feb; 11(8):3506-3513. PubMed ID: 30741302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation.
    Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X
    J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Simple and Effective Principle for a Rational Design of Heterogeneous Catalysts for Dehydrogenation of Formic Acid.
    Li SJ; Zhou YT; Kang X; Liu DX; Gu L; Zhang QH; Yan JM; Jiang Q
    Adv Mater; 2019 Apr; 31(15):e1806781. PubMed ID: 30803061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cu Nanocluster-Loaded TiO
    Yu F; Chen L; Li X; Shen X; Zhao H; Duan C; Chen Q
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18619-18626. PubMed ID: 33848135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Effective Strategy to Boost Formic Acid Dehydrogenation over Pd/AC-NH
    Jiang S; Shi H; Xu Y; Liu J; Yu T; Ren G
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39377117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile sonication-assisted deposition-reduction method for preparing supported metal catalysts for catalytic applications.
    Padilla RH; Priecel P; Lin M; Lopez-Sanchez JA; Zhong Z
    Ultrason Sonochem; 2017 Mar; 35(Pt B):631-639. PubMed ID: 26809489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amine-functionalized Schiff base covalent organic frameworks supported PdAuIr nanoparticles as high-performance catalysts for formic acid dehydrogenation and hexavalent chromium reduction.
    Guo X; Di X; Tang T; Shi Y; Liu D; Wang W; Liu Z; Ji X; Shao X
    J Colloid Interface Sci; 2024 Mar; 658():362-372. PubMed ID: 38113545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic effect of sandwich-like Ti
    Gao H; Liu Y; Zhu Y; Zhang J; Li L
    Nanotechnology; 2020 Mar; 31(11):115404. PubMed ID: 31747644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.