BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29794367)

  • 1. 5-Methylmellein is a novel inhibitor of fungal sirtuin and modulates fungal secondary metabolite production.
    Shigemoto R; Matsumoto T; Masuo S; Takaya N
    J Gen Appl Microbiol; 2018 Nov; 64(5):240-247. PubMed ID: 29794367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sirtuin A regulates secondary metabolite production by Aspergillus nidulans.
    Itoh E; Shigemoto R; Oinuma KI; Shimizu M; Masuo S; Takaya N
    J Gen Appl Microbiol; 2017 Sep; 63(4):228-235. PubMed ID: 28674377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA.
    Kawauchi M; Nishiura M; Iwashita K
    Eukaryot Cell; 2013 Aug; 12(8):1087-96. PubMed ID: 23729383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites.
    Shimizu M; Masuo S; Fujita T; Doi Y; Kamimura Y; Takaya N
    Mol Cell Biol; 2012 Sep; 32(18):3743-55. PubMed ID: 22801369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes.
    González-Menéndez V; Pérez-Bonilla M; Pérez-Victoria I; Martín J; Muñoz F; Reyes F; Tormo JR; Genilloud O
    Molecules; 2016 Feb; 21(2):. PubMed ID: 26901184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medicinal chemistry of sirtuin inhibitors.
    Chen L
    Curr Med Chem; 2011; 18(13):1936-46. PubMed ID: 21517778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase.
    Itoh E; Odakura R; Oinuma KI; Shimizu M; Masuo S; Takaya N
    J Biol Chem; 2017 Jun; 292(26):11043-11054. PubMed ID: 28465348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fungal Metabolite Eurochevalierine, a Sequiterpene Alkaloid, Displays Anti-Cancer Properties through Selective Sirtuin 1/2 Inhibition.
    Schnekenburger M; Mathieu V; Lefranc F; Jang JY; Masi M; Kijjoa A; Evidente A; Kim HJ; Kiss R; Dicato M; Han BW; Diederich M
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29401749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ -dependent histone deacetylases (sirtuins).
    Huber K; Schemies J; Uciechowska U; Wagner JM; Rumpf T; Lewrick F; Süss R; Sippl W; Jung M; Bracher F
    J Med Chem; 2010 Feb; 53(3):1383-6. PubMed ID: 20030343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic polyketides from marine algicolous fungi.
    Pontius A; Mohamed I; Krick A; Kehraus S; König GM
    J Nat Prod; 2008 Feb; 71(2):272-4. PubMed ID: 18197603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pleiotropic effects of the sirtuin inhibitor sirtinol involves concentration-dependent modulation of multiple nuclear receptor-mediated pathways in androgen-responsive prostate cancer cell LNCaP.
    Wang TT; Schoene NW; Kim EK; Kim YS
    Mol Carcinog; 2013 Sep; 52(9):676-85. PubMed ID: 22495798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Histone Deacetylase Inhibitors Alter the Secondary Metabolites of Botryosphaeria mamane, an Endophytic Fungus Isolated from Bixa orellana.
    Triastuti A; Vansteelandt M; Barakat F; Trinel M; Jargeat P; Fabre N; Amasifuen Guerra CA; Mejia K; Valentin A; Haddad M
    Chem Biodivers; 2019 Apr; 16(4):e1800485. PubMed ID: 30636097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Current State of NAD
    Schiedel M; Robaa D; Rumpf T; Sippl W; Jung M
    Med Res Rev; 2018 Jan; 38(1):147-200. PubMed ID: 28094444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic modulation of secondary metabolite profiles in Aspergillus calidoustus and Aspergillus westerdijkiae through histone deacetylase (HDAC) inhibition by vorinostat.
    Aldholmi M; Wilkinson B; Ganesan A
    J Antibiot (Tokyo); 2020 Jun; 73(6):410-413. PubMed ID: 32060485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and metabolomic profiling of ionic liquid stimuli unveils enhanced secondary metabolism in Aspergillus nidulans.
    Alves PC; Hartmann DO; Núñez O; Martins I; Gomes TL; Garcia H; Galceran MT; Hampson R; Becker JD; Silva Pereira C
    BMC Genomics; 2016 Apr; 17():284. PubMed ID: 27072538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors.
    Mai A; Massa S; Lavu S; Pezzi R; Simeoni S; Ragno R; Mariotti FR; Chiani F; Camilloni G; Sinclair DA
    J Med Chem; 2005 Dec; 48(24):7789-95. PubMed ID: 16302818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galloflavin suppresses lactate dehydrogenase activity and causes MYC downregulation in Burkitt lymphoma cells through NAD/NADH-dependent inhibition of sirtuin-1.
    Vettraino M; Manerba M; Govoni M; Di Stefano G
    Anticancer Drugs; 2013 Sep; 24(8):862-70. PubMed ID: 23797802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KdmB, a Jumonji Histone H3 Demethylase, Regulates Genome-Wide H3K4 Trimethylation and Is Required for Normal Induction of Secondary Metabolism in Aspergillus nidulans.
    Gacek-Matthews A; Berger H; Sasaki T; Wittstein K; Gruber C; Lewis ZA; Strauss J
    PLoS Genet; 2016 Aug; 12(8):e1006222. PubMed ID: 27548260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docking and binding free energy calculations of sirtuin inhibitors.
    Karaman B; Sippl W
    Eur J Med Chem; 2015 Mar; 93():584-98. PubMed ID: 25748123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale metabolomics reveals a complex response of Aspergillus nidulans to epigenetic perturbation.
    Albright JC; Henke MT; Soukup AA; McClure RA; Thomson RJ; Keller NP; Kelleher NL
    ACS Chem Biol; 2015 Jun; 10(6):1535-41. PubMed ID: 25815712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.