BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 29795038)

  • 1. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone.
    Nguyen PH; Arsalan M; Koo JH; Naqvi RA; Truong NQ; Park KR
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH; Kim KW; Lee YW; Park KR
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision Landing of a Quadcopter Drone by Smartphone Video Guidance Sensor in a GPS-Denied Environment.
    Bautista N; Gutierrez H; Inness J; Rakoczy J
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.
    Yang T; Li G; Li J; Zhang Y; Zhang X; Zhang Z; Li Z
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27589755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing.
    Truong NQ; Lee YW; Owais M; Nguyen DT; Batchuluun G; Pham TD; Park KR
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32674485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.
    Kyristsis S; Antonopoulos A; Chanialakis T; Stefanakis E; Linardos C; Tripolitsiotis A; Partsinevelos P
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Monocular Vision System for UAV Autonomous Landing in Outdoor Low-Illumination Environments.
    Lin S; Jin L; Chen Z
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Onboard 3D State Estimation of an Unmanned Aerial Vehicle in Multi-Environments Using Multi-Sensor Data Fusion.
    Du H; Wang W; Xu C; Xiao R; Sun C
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VIAE-Net: An End-to-End Altitude Estimation through Monocular Vision and Inertial Feature Fusion Neural Networks for UAV Autonomous Landing.
    Zhang X; He Z; Ma Z; Jun P; Yang K
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest.
    Claesson A; Fredman D; Svensson L; Ringh M; Hollenberg J; Nordberg P; Rosenqvist M; Djarv T; Österberg S; Lennartsson J; Ban Y
    Scand J Trauma Resusc Emerg Med; 2016 Oct; 24(1):124. PubMed ID: 27729058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dataset for multi-sensor drone detection.
    Svanström F; Alonso-Fernandez F; Englund C
    Data Brief; 2021 Dec; 39():107521. PubMed ID: 34765710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vehicle Counting Based on Vehicle Detection and Tracking from Aerial Videos.
    Xiang X; Zhai M; Lv N; El Saddik A
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous Landing of Quadrotor Unmanned Aerial Vehicles Based on Multi-Level Marker and Linear Active Disturbance Reject Control.
    Lv M; Fan B; Fang J; Wang J
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time and Accurate Drone Detection in a Video with a Static Background.
    Seidaliyeva U; Akhmetov D; Ilipbayeva L; Matson ET
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proactive Guidance for Accurate UAV Landing on a Dynamic Platform: A Visual-Inertial Approach.
    Chang CW; Lo LY; Cheung HC; Feng Y; Yang AS; Wen CY; Zhou W
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Heterogeneous Sensing System-Based Method for Unmanned Aerial Vehicle Indoor Positioning.
    Wang C; Li K; Liang G; Chen H; Huang S; Wu X
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28796184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UAV Landing Using Computer Vision Techniques for Human Detection.
    Safadinho D; Ramos J; Ribeiro R; Filipe V; Barroso J; Pereira A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
    Paull L; Thibault C; Nagaty A; Seto M; Li H
    IEEE Trans Cybern; 2014 Sep; 44(9):1605-18. PubMed ID: 25137689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPS-Free Wireless Precise Positioning System for Automatic Flying and Landing Application of Shipborne Unmanned Aerial Vehicle.
    Lo TY; Chang JY; Wei TZ; Chen PY; Huang SP; Tsai WT; Liou CY; Lin CC; Mao SG
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.