These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 29795172)

  • 1. Effects of moderate- and high-intensity aerobic training program in ambulatory subjects with incomplete spinal cord injury-a randomized controlled trial.
    Wouda MF; Lundgaard E; Becker F; Strøm V
    Spinal Cord; 2018 Oct; 56(10):955-963. PubMed ID: 29795172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in cardiorespiratory fitness and activity levels over the first year after discharge in ambulatory persons with recent incomplete spinal cord injury.
    Wouda MF; Lundgaard E; Becker F; Strøm V
    Spinal Cord; 2021 Mar; 59(3):354-360. PubMed ID: 32647328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Within-session responses to high-intensity interval training in spinal cord injury.
    Astorino TA; Thum JS
    Disabil Rehabil; 2018 Feb; 40(4):444-449. PubMed ID: 27930890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic and cardiovascular responses to treadmill walking and stationary cycling in subjects with incomplete spinal cord injury.
    Wouda MF; Wejden L; Lundgaard E; Strøm V
    Spinal Cord; 2016 Jan; 54(1):51-6. PubMed ID: 26215914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telehealth high-intensity interval exercise and cardiometabolic health in spinal cord injury.
    Adams J; Lai B; Rimmer J; Powell D; Yarar-Fisher C; Oster RA; Fisher G
    Trials; 2022 Aug; 23(1):633. PubMed ID: 35927708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of two protocols for treadmill walking exercise testing in ambulating subjects with incomplete spinal cord injury.
    Lundgaard E; Wouda MF; Strøm V
    Spinal Cord; 2017 Oct; 55(10):935-939. PubMed ID: 28534497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of High-Intensity Interval Training Versus Moderate-Intensity Training on Cardiometabolic Health Markers in Individuals With Spinal Cord Injury: A Pilot Study.
    Graham K; Yarar-Fisher C; Li J; McCully KM; Rimmer JH; Powell D; Bickel CS; Fisher G
    Top Spinal Cord Inj Rehabil; 2019; 25(3):248-259. PubMed ID: 31548792
    [No Abstract]   [Full Text] [Related]  

  • 8. Robotically assisted treadmill exercise training for improving peak fitness in chronic motor incomplete spinal cord injury: A randomized controlled trial.
    Gorman PH; Scott W; York H; Theyagaraj M; Price-Miller N; McQuaid J; Eyvazzadeh M; Ivey FM; Macko RF
    J Spinal Cord Med; 2016; 39(1):32-44. PubMed ID: 25520035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usefulness of the 6-minute walk test and the 200-metre fast walk test to individualize high intensity interval and continuous exercise training in coronary artery disease patients after acute coronary syndrome: a pilot controlled clinical study.
    Gremeaux M; Hannequin A; Laurent Y; Laroche D; Casillas JM; Gremeaux V
    Clin Rehabil; 2011 Sep; 25(9):844-55. PubMed ID: 21727151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aerobic exercise training on fitness and walking-related outcomes in ambulatory individuals with chronic incomplete spinal cord injury.
    DiPiro ND; Embry AE; Fritz SL; Middleton A; Krause JS; Gregory CM
    Spinal Cord; 2016 Sep; 54(9):675-81. PubMed ID: 26666508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: a 16-week randomized controlled trial.
    Bakkum AJ; de Groot S; Stolwijk-Swüste JM; van Kuppevelt DJ; ; van der Woude LH; Janssen TW
    Spinal Cord; 2015 May; 53(5):395-401. PubMed ID: 25622729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury.
    Brurok B; Helgerud J; Karlsen T; Leivseth G; Hoff J
    Am J Phys Med Rehabil; 2011 May; 90(5):407-14. PubMed ID: 21389841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-intensity interval training versus moderate-intensity steady-state training in UK cardiac rehabilitation programmes (HIIT or MISS UK): study protocol for a multicentre randomised controlled trial and economic evaluation.
    McGregor G; Nichols S; Hamborg T; Bryning L; Tudor-Edwards R; Markland D; Mercer J; Birkett S; Ennis S; Powell R; Begg B; Haykowsky MJ; Banerjee P; Ingle L; Shave R; Backx K
    BMJ Open; 2016 Nov; 6(11):e012843. PubMed ID: 27852718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of peak oxygen consumption response to aquatic and robotic therapy in individuals with chronic motor incomplete spinal cord injury: a randomized controlled trial.
    Gorman PH; Scott W; VanHiel L; Tansey KE; Sweatman WM; Geigle PR
    Spinal Cord; 2019 Jun; 57(6):471-481. PubMed ID: 30659286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of EMG-biofeedback robotic-assisted body weight supported treadmill training on walking ability and cardiopulmonary function on people with subacute spinal cord injuries - a randomized controlled trial.
    Cheung EYY; Yu KKK; Kwan RLC; Ng CKM; Chau RMW; Cheing GLY
    BMC Neurol; 2019 Jun; 19(1):140. PubMed ID: 31234791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults.
    Vella CA; Taylor K; Drummer D
    Eur J Sport Sci; 2017 Oct; 17(9):1203-1211. PubMed ID: 28792851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Training Response for Women in Cardiac Rehabilitation: A Randomized Clinical Trial.
    Khadanga S; Savage PD; Pecha A; Rengo J; Ades PA
    JAMA Cardiol; 2022 Feb; 7(2):215-218. PubMed ID: 34817540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of upper extremity aerobic exercise in patients with spinal cord injury: a randomized controlled study.
    Akkurt H; Karapolat HU; Kirazli Y; Kose T
    Eur J Phys Rehabil Med; 2017 Apr; 53(2):219-227. PubMed ID: 27824234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.