These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 29795251)

  • 21. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model.
    Betts RA; Alfieri L; Bradshaw C; Caesar J; Feyen L; Friedlingstein P; Gohar L; Koutroulis A; Lewis K; Morfopoulos C; Papadimitriou L; Richardson KJ; Tsanis I; Wyser K
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying economic impacts of climate change under nine future emission scenarios within CMIP6.
    Chen Y; Liu A; Cheng X
    Sci Total Environ; 2020 Feb; 703():134950. PubMed ID: 31744695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Air quality and climate connections.
    Fiore AM; Naik V; Leibensperger EM
    J Air Waste Manag Assoc; 2015 Jun; 65(6):645-85. PubMed ID: 25976481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water availability in +2°C and +4°C worlds.
    Fung F; Lopez A; New M
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):99-116. PubMed ID: 21115515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Historical global land surface air apparent temperature and its future changes based on CMIP6 projections.
    Huang J; Li Q; Song Z
    Sci Total Environ; 2022 Apr; 816():151656. PubMed ID: 34793798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Greater future global warming inferred from Earth's recent energy budget.
    Brown PT; Caldeira K
    Nature; 2017 Dec; 552(7683):45-50. PubMed ID: 29219964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Warming increases Bacterial Panicle Blight (Burkholderia glumae) occurrences and impacts on USA rice production.
    Shew AM; Durand-Morat A; Nalley LL; Zhou XG; Rojas C; Thoma G
    PLoS One; 2019; 14(7):e0219199. PubMed ID: 31295286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the optimality of 2°C targets and a decomposition of uncertainty.
    van der Wijst KI; Hof AF; van Vuuren DP
    Nat Commun; 2021 May; 12(1):2575. PubMed ID: 33958594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming.
    Huber V; Krummenauer L; Peña-Ortiz C; Lange S; Gasparrini A; Vicedo-Cabrera AM; Garcia-Herrera R; Frieler K
    Environ Res; 2020 Jul; 186():109447. PubMed ID: 32302868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of historical precipitation change to US flood damages.
    Davenport FV; Burke M; Diffenbaugh NS
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33431652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regional Temperature Response in Central Asia to National Committed Emission Reductions.
    Zhang J; Wang F
    Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31349658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A temperature binning approach for multi-sector climate impact analysis.
    Sarofim MC; Martinich J; Neumann JE; Willwerth J; Kerrich Z; Kolian M; Fant C; Hartin C
    Clim Change; 2021 Mar; 165():. PubMed ID: 34321705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Projection of Temperature-Related Myocardial Infarction in Augsburg, Germany: Moving on From the Paris Agreement on Climate Change.
    Chen K; Breitner S; Wolf K; Rai M; Meisinger C; Heier M; Kuch B; Peters A; Schneider A
    Dtsch Arztebl Int; 2019 Aug; 116(31-32):521-527. PubMed ID: 31554538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate Shifts within Major Agricultural Seasons for +1.5 and +2.0 °C Worlds: HAPPI Projections and AgMIP Modeling Scenarios.
    Ruane AC; Phillips MM; Rosenzweig C
    Agric For Meteorol; 2018 Sep; 259():329-344. PubMed ID: 30880854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biophysical and economic implications for agriculture of +1.5° and +2.0°C global warming using AgMIP Coordinated Global and Regional Assessments.
    Ruane AC; Antle J; Elliott J; Folberth C; Hoogenboom G; Mason-D'Croz D; Müller C; Porter C; Phillips MM; Raymundo RM; Sands R; Valdivia RO; White JW; Wiebe K; Rosenzweig C
    Clim Res; 2018; 76(1):17-39. PubMed ID: 33154611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Future precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate models.
    Li H; Chen H; Wang H; Yu E
    Sci Total Environ; 2018 Nov; 640-641():543-554. PubMed ID: 29864667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prospects for future climate change and the reasons for early action.
    MacCracken MC
    J Air Waste Manag Assoc; 2008 Jun; 58(6):735-86. PubMed ID: 18581807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in extreme temperature over China when global warming stabilized at 1.5 °C and 2.0 °C.
    Sun C; Jiang Z; Li W; Hou Q; Li L
    Sci Rep; 2019 Oct; 9(1):14982. PubMed ID: 31628358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.
    Wang Z; Lin L; Zhang X; Zhang H; Liu L; Xu Y
    Sci Rep; 2017 Apr; 7():46432. PubMed ID: 28425445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Marine heatwaves under global warming.
    Frölicher TL; Fischer EM; Gruber N
    Nature; 2018 Aug; 560(7718):360-364. PubMed ID: 30111788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.