BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29795609)

  • 21. Trophic cascades on the edge: fostering seagrass resilience via a novel pathway.
    Hughes BB; Hammerstrom KK; Grant NE; Hoshijima U; Eby R; Wasson K
    Oecologia; 2016 Sep; 182(1):231-41. PubMed ID: 27167224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-Term Field Study Reveals Subtle Effects of the Invasive Alga Sargassum muticum upon the Epibiota of Zostera marina.
    DeAmicis S; Foggo A
    PLoS One; 2015; 10(9):e0137861. PubMed ID: 26368805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seagrasses are negatively affected by organic matter loading and Arenicola marina activity in a laboratory experiment.
    Govers LL; Pieck T; Bouma TJ; Suykerbuyk W; Smolders AJ; van Katwijk MM
    Oecologia; 2014 Jun; 175(2):677-85. PubMed ID: 24633960
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased oyster aquaculture in the Sado Estuary (Portugal): How to ensure ecosystem sustainability?
    Brito AC; Pereira H; Picado A; Cruz J; Cereja R; Biguino B; Chainho P; Nascimento Â; Carvalho F; Cabral S; Santos C; Palma C; Borges C; Dias JM
    Sci Total Environ; 2023 Jan; 855():158898. PubMed ID: 36150595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitigation of Eutrophication and Hypoxia through Oyster Aquaculture: An Ecosystem Model Evaluation off the Pearl River Estuary.
    Yu L; Gan J
    Environ Sci Technol; 2021 Apr; 55(8):5506-5514. PubMed ID: 33760587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of seagrass restoration on coastal fish abundance and diversity.
    Hardison SB; McGlathery KJ; Castorani MCN
    Conserv Biol; 2023 Dec; 37(6):e14147. PubMed ID: 37424354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational estimation of sediment symbiotic bacterial structures of seagrasses overgrowing downstream of onshore aquaculture.
    Miyamoto H; Kawachi N; Kurotani A; Moriya S; Suda W; Suzuki K; Matsuura M; Tsuji N; Nakaguma T; Ishii C; Tsuboi A; Shindo C; Kato T; Udagawa M; Satoh T; Wada S; Masuya H; Miyamoto H; Ohno H; Kikuchi J
    Environ Res; 2023 Feb; 219():115130. PubMed ID: 36563976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Species level mapping of a seagrass bed using an unmanned aerial vehicle and deep learning technique.
    Tahara S; Sudo K; Yamakita T; Nakaoka M
    PeerJ; 2022; 10():e14017. PubMed ID: 36275465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single beam sonar reveals the distribution of the eelgrass Zostera marina L. and threats from the green tide algae Chaetomorpha linum K. in Swan-Lake lagoon (China).
    Xu S; Xu S; Zhou Y; Zhao P; Yue S; Song X; Zhang X; Gu R; Wang P; Zhang Y
    Mar Pollut Bull; 2019 Aug; 145():611-623. PubMed ID: 31590831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecological impacts of genotypic diversity in the clonal seagrass Zostera marina.
    Hughes AR; Stachowicz JJ
    Ecology; 2009 May; 90(5):1412-9. PubMed ID: 19537560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unexpected resilience of a seagrass system exposed to global stressors.
    Hughes BB; Lummis SC; Anderson SC; Kroeker KJ
    Glob Chang Biol; 2018 Jan; 24(1):224-234. PubMed ID: 28752587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed.
    Sweatman JL; Layman CA; Fourqurean JW
    Mar Environ Res; 2017 May; 126():95-108. PubMed ID: 28259103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eelgrass structural complexity mediates mesograzer herbivory on epiphytic algae.
    Voigt EP; Hovel KA
    Oecologia; 2019 Jan; 189(1):199-209. PubMed ID: 30498859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial epiphyte and endophyte communities of seagrass Thalassia hemprichii: the impact of feed extract solution.
    Cai Z; Zhou L; Liu L; Wang D; Ren W; Long H; Zhang X; Xie Z
    Environ Microbiol Rep; 2021 Dec; 13(6):757-772. PubMed ID: 34713580
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China.
    Lin H; Sun T; Xue S; Jiang X
    Sci Total Environ; 2016 Jan; 541():435-443. PubMed ID: 26410718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expanding Greenland seagrass meadows contribute new sediment carbon sinks.
    Marbà N; Krause-Jensen D; Masqué P; Duarte CM
    Sci Rep; 2018 Sep; 8(1):14024. PubMed ID: 30232387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recovery of a top predator mediates negative eutrophic effects on seagrass.
    Hughes BB; Eby R; Van Dyke E; Tinker MT; Marks CI; Johnson KS; Wasson K
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15313-8. PubMed ID: 23983266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial patterns and predictor variables vary among different types of primary producers and consumers in eelgrass (Zostera marina) beds.
    Namba M; Nakaoka M
    PLoS One; 2018; 13(8):e0201791. PubMed ID: 30086164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the Mycobiome of the Seagrass,
    Ettinger CL; Eisen JA
    Front Microbiol; 2019; 10():2476. PubMed ID: 31749781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential impacts of finfish aquaculture on eelgrass (
    Cullain N; McIver R; Schmidt AL; Milewski I; Lotze HK
    PeerJ; 2018; 6():e5630. PubMed ID: 30310739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.