These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 29795674)
1. Human microRNAs preferentially target genes with intermediate levels of expression and its formation by mammalian evolution. Iwama H; Kato K; Imachi H; Murao K; Masaki T PLoS One; 2018; 13(5):e0198142. PubMed ID: 29795674 [TBL] [Abstract][Full Text] [Related]
2. Most mammalian mRNAs are conserved targets of microRNAs. Friedman RC; Farh KK; Burge CB; Bartel DP Genome Res; 2009 Jan; 19(1):92-105. PubMed ID: 18955434 [TBL] [Abstract][Full Text] [Related]
3. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Farh KK; Grimson A; Jan C; Lewis BP; Johnston WK; Lim LP; Burge CB; Bartel DP Science; 2005 Dec; 310(5755):1817-21. PubMed ID: 16308420 [TBL] [Abstract][Full Text] [Related]
4. MicroRNA duplication accelerates the recruitment of new targets during vertebrate evolution. Luo J; Wang Y; Yuan J; Zhao Z; Lu J RNA; 2018 Jun; 24(6):787-802. PubMed ID: 29511046 [TBL] [Abstract][Full Text] [Related]
5. The evolving role of microRNAs in animal gene expression. Massirer KB; Pasquinelli AE Bioessays; 2006 May; 28(5):449-52. PubMed ID: 16615087 [TBL] [Abstract][Full Text] [Related]
6. The roles of binding site arrangement and combinatorial targeting in microRNA repression of gene expression. Hon LS; Zhang Z Genome Biol; 2007; 8(8):R166. PubMed ID: 17697356 [TBL] [Abstract][Full Text] [Related]
7. Integrated analysis of directly captured microRNA targets reveals the impact of microRNAs on mammalian transcriptome. Bjerke GA; Yi R RNA; 2020 Mar; 26(3):306-323. PubMed ID: 31900330 [TBL] [Abstract][Full Text] [Related]
8. The human transcriptome is enriched for miRNA-binding sites located in cooperativity-permitting distance. Rinck A; Preusse M; Laggerbauer B; Lickert H; Engelhardt S; Theis FJ RNA Biol; 2013 Jul; 10(7):1125-35. PubMed ID: 23696004 [TBL] [Abstract][Full Text] [Related]
9. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. Shukla P; Vogl C; Wallner B; Rigler D; Müller M; Macho-Maschler S BMC Genomics; 2015 Nov; 16():944. PubMed ID: 26572553 [TBL] [Abstract][Full Text] [Related]
11. Deep sequencing, profiling and detailed annotation of microRNAs in Takifugu rubripes. Wongwarangkana C; Fujimori KE; Akiba M; Kinoshita S; Teruya M; Nezuo M; Masatoshi T; Watabe S; Asakawa S BMC Genomics; 2015 Jun; 16(1):457. PubMed ID: 26078057 [TBL] [Abstract][Full Text] [Related]
12. Mammalian microRNA prediction through a support vector machine model of sequence and structure. Sheng Y; Engström PG; Lenhard B PLoS One; 2007 Sep; 2(9):e946. PubMed ID: 17895987 [TBL] [Abstract][Full Text] [Related]
13. An evolutionary perspective of animal microRNAs and their targets. Shomron N; Golan D; Hornstein E J Biomed Biotechnol; 2009; 2009():594738. PubMed ID: 19759918 [TBL] [Abstract][Full Text] [Related]
15. miRNA sponges: soaking up miRNAs for regulation of gene expression. Bak RO; Mikkelsen JG Wiley Interdiscip Rev RNA; 2014; 5(3):317-33. PubMed ID: 24375960 [TBL] [Abstract][Full Text] [Related]
16. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain. Gunbin KV; Afonnikov DA; Kolchanov NA; Derevianko AP; Rogaev EI BMC Genomics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26693966 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary Transitions of MicroRNA-Target Pairs. Nozawa M; Fujimi M; Iwamoto C; Onizuka K; Fukuda N; Ikeo K; Gojobori T Genome Biol Evol; 2016 Jun; 8(5):1621-33. PubMed ID: 27189995 [TBL] [Abstract][Full Text] [Related]
18. Unified translation repression mechanism for microRNAs and upstream AUGs. Ajay SS; Athey BD; Lee I BMC Genomics; 2010 Mar; 11():155. PubMed ID: 20205738 [TBL] [Abstract][Full Text] [Related]