These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 2979577)
21. The amplitude of circadian oscillations: temperature dependence, latitudinal clines, and the photoperiodic time measurement. Pittendrigh CS; Kyner WT; Takamura T J Biol Rhythms; 1991; 6(4):299-313. PubMed ID: 1773097 [TBL] [Abstract][Full Text] [Related]
22. The circadian basis of ovarian diapause regulation in Drosophila melanogaster: is the period gene causally involved in photoperiodic time measurement? Saunders DS J Biol Rhythms; 1990; 5(4):315-31. PubMed ID: 2133139 [TBL] [Abstract][Full Text] [Related]
23. Selection for high diapause incidence in blow flies (Calliphora vicina) maintained under long days increases the maternal critical daylength: some consequences for the photoperiodic clock. Saunders DS; Cymborowski B J Insect Physiol; 2003 Aug; 49(8):777-84. PubMed ID: 12880658 [TBL] [Abstract][Full Text] [Related]
24. Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. Salminen TS; Hoikkala A J Insect Physiol; 2013 Apr; 59(4):450-7. PubMed ID: 23428942 [TBL] [Abstract][Full Text] [Related]
25. Photoperiodic control of diapause induction and termination in Ostrinia nubilalis: two different clocks? Skopik SD; Takeda M J Biol Rhythms; 1986; 1(2):137-43. PubMed ID: 2979579 [TBL] [Abstract][Full Text] [Related]
26. The same photoperiodic clock may control induction and maintenance of diapause in the spider mite Tetranchus urticae. Koveos DS; Kroon A; Veerman A J Biol Rhythms; 1993; 8(4):265-82. PubMed ID: 8032087 [TBL] [Abstract][Full Text] [Related]
27. Insect photoperiodism: diversity of results in night-break experiments, including nonresponsiveness to light. Skopik SD; Takeda M; Cain WJ; Patel NG J Biol Rhythms; 1986; 1(3):243-9. PubMed ID: 2979587 [TBL] [Abstract][Full Text] [Related]
28. Latitudinal variation in eclosion rhythm among strains of Drosophila ananassae. Joshi DS; Gore AP Indian J Exp Biol; 1999 Jul; 37(7):718-24. PubMed ID: 10522160 [TBL] [Abstract][Full Text] [Related]
29. Effects of Temperature on Weak Circadian Eclosion Rhythmicity in Chymomyza costata (Diptera: Drosophilidae). RIIHIMAA A; LANKINEN P J Insect Physiol; 1997 Mar; 43(3):251-260. PubMed ID: 12769909 [TBL] [Abstract][Full Text] [Related]
31. Direct and correlated responses to bi-directional selection on pre-adult development time in Drosophila montana. Kauranen H; Kinnunen J; Hopkins D; Hoikkala A J Insect Physiol; 2019 Jul; 116():77-89. PubMed ID: 31004669 [TBL] [Abstract][Full Text] [Related]
32. Artificial selection for responsiveness to photoperiodic change alters the response to stationary photoperiods in maternal induction of egg diapause in the rice leaf bug Trigonotylus caelestialium. Shintani Y J Insect Physiol; 2009 Sep; 55(9):818-24. PubMed ID: 19482029 [TBL] [Abstract][Full Text] [Related]
33. Adult locomotor rhythmicity as "hands" of the maternal photoperiodic clock regulating larval diapause in the blowfly, Calliphora vicina. Kenny NA; Saunders DS J Biol Rhythms; 1991; 6(3):217-33. PubMed ID: 1773093 [TBL] [Abstract][Full Text] [Related]
34. Diapause induction and clock mechanism in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae). Wang X; Ge F; Xue F; You L J Insect Physiol; 2004 May; 50(5):373-81. PubMed ID: 15121450 [TBL] [Abstract][Full Text] [Related]
35. Circadian phenotypes of Drosophila fragile x mutants in alternative genetic backgrounds. Sekine T; Yamaguchi T; Hamano K; Siomi H; Saez L; Ishida N; Shimoda M Zoolog Sci; 2008 Jun; 25(6):561-71. PubMed ID: 18624566 [TBL] [Abstract][Full Text] [Related]