These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29795779)

  • 1. Interplay of cation and anion redox in Li
    Yao Z; Kim S; He J; Hegde VI; Wolverton C
    Sci Adv; 2018 May; 4(5):eaao6754. PubMed ID: 29795779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of O-O Bonds by d
    Taylor ZN; Perez AJ; Coca-Clemente JA; Braga F; Drewett NE; Pitcher MJ; Thomas WJ; Dyer MS; Collins C; Zanella M; Johnson T; Day S; Tang C; Dhanak VR; Claridge JB; Hardwick LJ; Rosseinsky MJ
    J Am Chem Soc; 2019 May; 141(18):7333-7346. PubMed ID: 30974948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries.
    Cambaz MA; Vinayan BP; Euchner H; Pervez SA; Geßwein H; Braun T; Gross A; Fichtner M
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39848-39858. PubMed ID: 31589014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new active Li-Mn-O compound for high energy density Li-ion batteries.
    Freire M; Kosova NV; Jordy C; Chateigner D; Lebedev OI; Maignan A; Pralong V
    Nat Mater; 2016 Feb; 15(2):173-7. PubMed ID: 26595122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li7Mn(BO3)3.
    Roos J; Eames C; Wood SM; Whiteside A; Islam MS
    Phys Chem Chem Phys; 2015 Sep; 17(34):22259-65. PubMed ID: 26242619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding of Surface Redox Behaviors of Li2MnO3 in Li-Ion Batteries: First-Principles Prediction and Experimental Validation.
    Kim D; Lim JM; Lim YG; Park MS; Kim YJ; Cho M; Cho K
    ChemSusChem; 2015 Oct; 8(19):3255-62. PubMed ID: 26289748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Electrochemical Activity of Monoclinic Li
    Shree Kesavan K; Michael MS; Prabaharan SRS
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28868-28877. PubMed ID: 31314488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2.
    Luo K; Roberts MR; Guerrini N; Tapia-Ruiz N; Hao R; Massel F; Pickup DM; Ramos S; Liu YS; Guo J; Chadwick AV; Duda LC; Bruce PG
    J Am Chem Soc; 2016 Sep; 138(35):11211-8. PubMed ID: 27498756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhedral perspectives on the capacity limit of cathode compounds for lithium-ion batteries: a case study for Li
    Chen Z; Zhang Z; Li J
    Phys Chem Chem Phys; 2018 Aug; 20(31):20363-20370. PubMed ID: 29878019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure.
    Nakayama M; Kaneko M; Wakihara M
    Phys Chem Chem Phys; 2012 Oct; 14(40):13963-70. PubMed ID: 22986640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.
    Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT
    Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemistry and structure of the cobalt-free Li1+xMO2 (M = Li, Ni, Mn, Fe) composite cathode.
    Pang WK; Kalluri S; Peterson VK; Dou SX; Guo Z
    Phys Chem Chem Phys; 2014 Dec; 16(46):25377-85. PubMed ID: 25337805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion batteries.
    Huan L; Xie J; Chen M; Diao G; Zhao R; Zuo T
    J Mol Model; 2017 Apr; 23(4):105. PubMed ID: 28271285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Underlying mechanisms of the synergistic role of Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 in high-Mn, Li-rich oxides.
    Lim JM; Kim D; Park MS; Cho M; Cho K
    Phys Chem Chem Phys; 2016 Apr; 18(16):11411-21. PubMed ID: 27056677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries.
    Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D
    Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock Salt Cathodes for Li-Ion Batteries.
    Jacquet Q; Iadecola A; Saubanère M; Li H; Berg EJ; Rousse G; Cabana J; Doublet ML; Tarascon JM
    J Am Chem Soc; 2019 Jul; 141(29):11452-11464. PubMed ID: 31290652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Type of Li-Rich Rock-Salt Oxide Li
    Li X; Qiao Y; Guo S; Jiang K; Ishida M; Zhou H
    Adv Mater; 2019 Mar; 31(11):e1807825. PubMed ID: 30672613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.