BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 2979578)

  • 1. Masking of the circadian rhythms of heart rate and core temperature by the rest-activity cycle in man.
    Gander PH; Connell LJ; Graeber RC
    J Biol Rhythms; 1986; 1(2):119-35. PubMed ID: 2979578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear demasking techniques are unreliable for estimating the circadian phase of ambulatory temperature data.
    Klerman EB; Lee Y; Czeisler CA; Kronauer RE
    J Biol Rhythms; 1999 Aug; 14(4):260-74. PubMed ID: 10447306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of circadian melatonin rhythm and sleep-wake cycle by bright lights and nonphotic time cues in humans.
    Yamanaka Y; Hashimoto S; Masubuchi S; Natsubori A; Nishide SY; Honma S; Honma K
    Am J Physiol Regul Integr Comp Physiol; 2014 Sep; 307(5):R546-57. PubMed ID: 24944250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambulatory circadian monitoring (ACM) based on thermometry, motor activity and body position (TAP): a comparison with polysomnography.
    Ortiz-Tudela E; Martinez-Nicolas A; Albares J; Segarra F; Campos M; Estivill E; Rol MA; Madrid JA
    Physiol Behav; 2014 Mar; 126():30-8. PubMed ID: 24398067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal interactions within the human circadian system: the masking effect.
    Wever RA
    Experientia; 1985 Mar; 41(3):332-42. PubMed ID: 3972077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Masking effects of posture and sleep onset on core body temperature have distinct circadian rhythms: results from a 90-min/day protocol.
    Moul DE; Ombao H; Monk TH; Chen Q; Buysse DJ
    J Biol Rhythms; 2002 Oct; 17(5):447-62. PubMed ID: 12375621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of sleep/wake, activity and temperature rhythms in newborns maintained in a neonatal intensive care unit and the impact of feeding schedules.
    Bueno C; Menna-Barreto L
    Infant Behav Dev; 2016 Aug; 44():21-8. PubMed ID: 27261553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects on human sleep and circadian rhythms of 17 days of continuous bedrest in the absence of daylight.
    Monk TH; Buysse DJ; Billy BD; Kennedy KS; Kupfer DJ
    Sleep; 1997 Oct; 20(10):858-64. PubMed ID: 9415945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of REM sleep is coupled to the circadian rhythm of body temperature in man.
    Czeisler CA; Zimmerman JC; Ronda JM; Moore-Ede MC; Weitzman ED
    Sleep; 1980; 2(3):329-46. PubMed ID: 7403736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endogenous circadian temperature period length (tau) in delayed sleep phase disorder compared to good sleepers.
    Micic G; de Bruyn A; Lovato N; Wright H; Gradisar M; Ferguson S; Burgess HJ; Lack L
    J Sleep Res; 2013 Dec; 22(6):617-24. PubMed ID: 23899423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep restriction masks the influence of the circadian process on sleep propensity.
    Sargent C; Darwent D; Ferguson SA; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):565-71. PubMed ID: 22621352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypocretin deficiency in narcolepsy with cataplexy is associated with a normal body core temperature modulation.
    Grimaldi D; Agati P; Pierangeli G; Franceschini C; Guaraldi P; Barletta G; Vandi S; Cevoli S; Plazzi G; Montagna P; Cortelli P
    Chronobiol Int; 2010 Sep; 27(8):1596-608. PubMed ID: 20854137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nycthemeral variations in core temperature and heart rate: continuous cycling exercise versus continuous rest.
    Callard D; Davenne D; Lagarde D; Meney I; Gentil C; Van Hoecke J
    Int J Sports Med; 2001 Nov; 22(8):553-7. PubMed ID: 11719889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations of the characteristics of the circadian rest-activity rhythm of cancer in-patients.
    Pati AK; Parganiha A; Kar A; Soni R; Roy S; Choudhary V
    Chronobiol Int; 2007; 24(6):1179-97. PubMed ID: 18075806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal desynchronization of circadian rhythms and tolerance to shift work.
    Reinberg A; Ashkenazi I
    Chronobiol Int; 2008 Jul; 25(4):625-43. PubMed ID: 18622820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms.
    Gubin DG; Weinert D; Rybina SV; Danilova LA; Solovieva SV; Durov AM; Prokopiev NY; Ushakov PA
    Chronobiol Int; 2017; 34(5):632-649. PubMed ID: 28276854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separating the endogenous and exogenous components of the circadian rhythm of body temperature during night work using some 'purification' models.
    Minors DS; Waterhouse JM
    Ergonomics; 1993 May; 36(5):497-507. PubMed ID: 8500471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of activity on the waking temperature rhythm in humans.
    Waterhouse J; Weinert D; Minors D; Atkinson G; Reilly T; Folkard S; Owens D; Macdonald I; Sytnik N; Tucker P
    Chronobiol Int; 1999 May; 16(3):343-57. PubMed ID: 10373103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acute effects of experimental short-term evening and night shifts on human circadian rhythm: the oral temperature, heart rate, serum cortisol and urinary catecholamines levels.
    Fujiwara S; Shinkai S; Kurokawa Y; Watanabe T
    Int Arch Occup Environ Health; 1992; 63(6):409-18. PubMed ID: 1544690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.