These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29795785)

  • 1. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.
    Bottaro S; Bussi G; Kennedy SD; Turner DH; Lindorff-Larsen K
    Sci Adv; 2018 May; 4(5):eaar8521. PubMed ID: 29795785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rigorous and Efficient Method To Reweight Very Large Conformational Ensembles Using Average Experimental Data and To Determine Their Relative Information Content.
    Leung HT; Bignucolo O; Aregger R; Dames SA; Mazur A; Bernèche S; Grzesiek S
    J Chem Theory Comput; 2016 Jan; 12(1):383-94. PubMed ID: 26632648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Molecular Simulation and Experimental Data: A Bayesian/Maximum Entropy Reweighting Approach.
    Bottaro S; Bengtsen T; Lindorff-Larsen K
    Methods Mol Biol; 2020; 2112():219-240. PubMed ID: 32006288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and conformational dynamics of the domain 5 RNA hairpin of a bacterial group II intron revealed by solution nuclear magnetic resonance and molecular dynamics simulations.
    Pechlaner M; Sigel RK; van Gunsteren WF; Dolenc J
    Biochemistry; 2013 Oct; 52(40):7099-113. PubMed ID: 24001362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles.
    Childers MC; Daggett V
    J Phys Chem B; 2018 Jul; 122(26):6673-6689. PubMed ID: 29864281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational ensembles of an RNA hairpin using molecular dynamics and sparse NMR data.
    Reißer S; Zucchelli S; Gustincich S; Bussi G
    Nucleic Acids Res; 2020 Feb; 48(3):1164-1174. PubMed ID: 31889193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Ensemble Refinement by Reweighting.
    Köfinger J; Stelzl LS; Reuter K; Allande C; Reichel K; Hummer G
    J Chem Theory Comput; 2019 May; 15(5):3390-3401. PubMed ID: 30939006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Simulations and Solution Experiments as a Paradigm for RNA Force Field Refinement.
    Cesari A; Gil-Ley A; Bussi G
    J Chem Theory Comput; 2016 Dec; 12(12):6192-6200. PubMed ID: 27951677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Force Field Parameters Lead to a Better Description of RNA Structure.
    Bergonzo C; Cheatham TE
    J Chem Theory Comput; 2015 Sep; 11(9):3969-72. PubMed ID: 26575892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA folding pathways in stop motion.
    Bottaro S; Gil-Ley A; Bussi G
    Nucleic Acids Res; 2016 Jul; 44(12):5883-91. PubMed ID: 27091499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing accuracy of RNA structure in refinement against residual dipolar couplings.
    Bergonzo C; Grishaev A
    J Biomol NMR; 2019 Apr; 73(3-4):117-139. PubMed ID: 31049778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing RNA ensembles from NMR data with kinematic models.
    Fonseca R; Pachov DV; Bernauer J; van den Bedem H
    Nucleic Acids Res; 2014 Sep; 42(15):9562-72. PubMed ID: 25114056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensemble fits of restrained peptides' conformational equilibria to NMR data. Dependence on force fields: AMBER/8 ff03 versus ECEPP/3.
    Ciarkowski J; Łuczak S; Jagieła D; Sikorska E; Wójcik J; Oleszczuk M; Izdebski J
    J Mol Graph Model; 2012 Feb; 32():67-74. PubMed ID: 22079210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical Corrections to the Amber RNA Force Field with Target Metadynamics.
    Gil-Ley A; Bottaro S; Bussi G
    J Chem Theory Comput; 2016 Jun; 12(6):2790-8. PubMed ID: 27153317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of determining RNA conformational ensembles using structure-based calculations of residual dipolar couplings.
    Borkar AN; De Simone A; Montalvao RW; Vendruscolo M
    J Chem Phys; 2013 Jun; 138(21):215103. PubMed ID: 23758399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling Inherent Degeneracies in Determining Population-Weighted Ensembles of Interdomain Orientational Distributions Using NMR Residual Dipolar Couplings: Application to RNA Helix Junction Helix Motifs.
    Yang S; Al-Hashimi HM
    J Phys Chem B; 2015 Jul; 119(30):9614-26. PubMed ID: 26131693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of single-molecule time-series data for refining conformational dynamics in molecular simulations.
    Matsunaga Y; Sugita Y
    Curr Opin Struct Biol; 2020 Apr; 61():153-159. PubMed ID: 32004808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the conformational states of strychnine in solution using NMR residual dipolar couplings in a tensor-free approach.
    Tomba G; Camilloni C; Vendruscolo M
    Methods; 2018 Sep; 148():4-8. PubMed ID: 30036639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Guide to the Simultaneous Determination of Protein Structure and Dynamics Using Metainference.
    Löhr T; Camilloni C; Bonomi M; Vendruscolo M
    Methods Mol Biol; 2019; 2022():313-340. PubMed ID: 31396909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.