These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29795952)

  • 1. Evaluation of Two Methods for Modeling Measurement Errors When Testing Interaction Effects With Observed Composite Scores.
    Hsiao YY; Kwok OM; Lai MHC
    Educ Psychol Meas; 2018 Apr; 78(2):181-202. PubMed ID: 29795952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Measurement Errors of the Exogenous Composites From Congeneric Measures in Interaction Models.
    Hsiao YY; Kwok OM; Lai MHC
    Struct Equ Modeling; 2021; 28(2):250-260. PubMed ID: 34239281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Which method is more powerful in testing the relationship of theoretical constructs? A meta comparison of structural equation modeling and path analysis with weighted composites.
    Deng L; Yuan KH
    Behav Res Methods; 2023 Apr; 55(3):1460-1479. PubMed ID: 35653013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of Moderation and Mediation in a Latent Variable Framework: A Comparison of Estimation Approaches for the Second-Stage Moderated Mediation Model.
    Feng Q; Song Q; Zhang L; Zheng S; Pan J
    Front Psychol; 2020; 11():2167. PubMed ID: 33013556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage path analysis with definition variables: An alternative framework to account for measurement error.
    Lai MHC; Hsiao YY
    Psychol Methods; 2022 Aug; 27(4):568-588. PubMed ID: 34881957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal-to-Noise Ratio in Estimating and Testing the Mediation Effect: Structural Equation Modeling versus Path Analysis with Weighted Composites.
    Yuan KH; Zhang Z; Wang L
    Psychometrika; 2024 Sep; 89(3):974-1006. PubMed ID: 38806853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing Spurious Interaction Effects in Structural Equation Modeling: A Cautionary Note.
    Harring JR; Weiss BA; Li M
    Educ Psychol Meas; 2015 Oct; 75(5):721-738. PubMed ID: 29795838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling congruence in organizational research with latent moderated structural equations.
    Su R; Zhang Q; Liu Y; Tay L
    J Appl Psychol; 2019 Nov; 104(11):1404-1433. PubMed ID: 31045381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating and interpreting latent variable interactions: A tutorial for applying the latent moderated structural equations method.
    Maslowsky J; Jager J; Hemken D
    Int J Behav Dev; 2015 Jan; 39(1):87-96. PubMed ID: 26478643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reexamining Nonlinear Structural Equation Modeling Procedures: The Effect of Parallel and Congeneric Measures.
    Rdz-Navarro K; Alvarado JM
    Multivariate Behav Res; 2015; 50(6):645-61. PubMed ID: 26717124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of several approaches for controlling measurement error in small samples.
    Savalei V
    Psychol Methods; 2019 Jun; 24(3):352-370. PubMed ID: 29781637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normality assumption in latent interaction models.
    Lonati S; Rönkkö M; Antonakis J
    Psychol Methods; 2024 Apr; ():. PubMed ID: 38573667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian Model For The Estimation Of Latent Interaction And Quadratic Effects When Latent Variables Are Non-Normally Distributed.
    Kelava A; Nagengast B
    Multivariate Behav Res; 2012 Sep; 47(5):717-42. PubMed ID: 26754442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites?
    Yuan KH; Fang Y
    Br J Math Stat Psychol; 2023 Nov; 76(3):646-678. PubMed ID: 37786372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposing model fit: measurement vs. theory in organizational research using latent variables.
    O'Boyle EH; Williams LJ
    J Appl Psychol; 2011 Jan; 96(1):1-12. PubMed ID: 20718518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating Latent Variable Interactions With Non-Normal Observed Data: A Comparison of Four Approaches.
    Cham H; West SG; Ma Y; Aiken LS
    Multivariate Behav Res; 2012 Nov; 47(6):840-876. PubMed ID: 23457417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full Information Maximum Likelihood Estimation for Latent Variable Interactions With Incomplete Indicators.
    Cham H; Reshetnyak E; Rosenfeld B; Breitbart W
    Multivariate Behav Res; 2017; 52(1):12-30. PubMed ID: 27834491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More powerful parameter tests? No, rather biased parameter estimates. Some reflections on path analysis with weighted composites.
    Schuberth F; Schamberger T; Henseler J
    Behav Res Methods; 2024 Apr; 56(4):4205-4215. PubMed ID: 37936011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating power in complex nonlinear structural equation modeling including moderation effects: The powerNLSEM R-package.
    Irmer JP; Klein AG; Schermelleh-Engel K
    Behav Res Methods; 2024 Dec; 56(8):8897-8931. PubMed ID: 39304602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Premature conclusions about the signal-to-noise ratio in structural equation modeling research: A commentary on Yuan and Fang (2023).
    Schuberth F; Schamberger T; Rönkkö M; Liu Y; Henseler J
    Br J Math Stat Psychol; 2023 Nov; 76(3):682-694. PubMed ID: 37070527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.